Spatial analysis and modelling of land use distributions in Belgium

When statistical analyses of land use drivers are performed, they rarely deal explicitly with spatial autocorrelation. Most studies are undertaken on autocorrelation-free data samples. By doing this, a great deal of information that is present in the dataset is lost. This paper presents a spatially explicit, cross-sectional analysis of land use drivers in Belgium. It is shown that purely regressive logistic models only identify trends or global relationships between socio-economic or physico-climatic drivers and the precise location of each land use type. However, when the goal of a study is to obtain the best statistical model fit of land use distribution, a purely autoregressive model is appropriate. It is shown that this type of model deals appropriately with spatial autocorrelation as measured by the lack of autocorrelation in the deviance residuals of the model. More specifically, three types of autoregressive models are compared: (1) a set of binomial logistic regression models (one for each modelled land use) accounting only for the proportion of the modelled land use within the neighbourhood of a cell; (2) a multinomial autologistic regression that accounts for the composition of a cell's neighbourhood; and (3) a stateof-the-art Bayesian Maximum Entropy (BME) based model that accounts fully for the spatial organization of the land uses within the neighbourhood of a cell. The comparative analysis shows that the BME approach has no advantages over the other methods, for our specific application, but that accounting for the composition of a cell's neighbourhood is essential in obtaining an optimal fit. (C) 2006 Elsevier Ltd. All rights reserved.

[1]  C. Heunks,et al.  Land cover characterization and change detection for environmental monitoring of pan-Europe , 2000 .

[2]  Mark Rounsevell,et al.  The limitations of spatial land use data in environmental analysis , 2006 .

[3]  T. D. Mitchell,et al.  A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901-2000) and 16 scenarios (2001-2100). , 2004 .

[4]  Ton C M de Nijs,et al.  Determinants of Land-Use Change Patterns in the Netherlands , 2004 .

[5]  Sergio J. Rey,et al.  Advances in Spatial Econometrics , 2004 .

[6]  George Christakos,et al.  Modern Spatiotemporal Geostatistics , 2000 .

[7]  E. Lambin,et al.  Predicting land-use change , 2001 .

[8]  Jos Van Orshoven,et al.  The completed database of Belgian soil profile data and its applicability in the planning and management of rural land , 1993 .

[9]  Johann Heinrich von Thünen Der isolierte Staat in Beziehung auf Landwirtschaft und Nationalökonomie , 1990 .

[10]  G. Christakos A Bayesian/maximum-entropy view to the spatial estimation problem , 1990 .

[11]  John Stillwell,et al.  Planning Support Systems in Practice , 2003 .

[12]  Takeshi Arai,et al.  Empirical analysis for estimating land use transition potential functions - case in the Tokyo metropolitan region , 2004, Comput. Environ. Urban Syst..

[13]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[14]  Michael Batty,et al.  From Cells to Cities , 1994 .

[15]  Kor de Jong,et al.  A method to analyse neighbourhood characteristics of land use patterns , 2004, Comput. Environ. Urban Syst..

[16]  Mark Rounsevell,et al.  Exploring a spatio‐dynamic neighbourhood‐based model of residential behaviour in the Brussels periurban area , 2005, Int. J. Geogr. Inf. Sci..

[17]  H. Stanley,et al.  Modelling urban growth patterns , 1995, Nature.

[18]  J. Ristaino,et al.  New Frontiers in the Study of Dispersal and Spatial Analysis of Epidemics Caused by Species in the Genus Phytophthora. , 2000, Annual review of phytopathology.

[19]  Patrick Bogaert,et al.  Spatial prediction of categorical variables with the Bayesian Maximum Entropy approach: the Ooypolder case study , 2004 .

[20]  D. D. French,et al.  Exploring spatial vegetation dynamics using logistic regression and a multinomial logit model , 2001 .

[21]  Luc Anselin,et al.  Under the hood , 2002 .

[22]  Patrick Bogaert,et al.  Temporal GIS: Advanced Functions for Field-Based Applications , 2002 .

[23]  M. Rounsevell,et al.  Scenario-based studies of future land use in Europe , 2006 .

[24]  M. D. A. Rounsevella,et al.  Modelling the spatial distribution of agricultural land use at the regional scale , 2003 .

[25]  Sergio J. Rey,et al.  Advances in Spatial Econometrics: Methodology, Tools and Applications , 2004 .

[26]  Aaron Moody,et al.  Scale-dependent errors in the estimation of land-cover proportions. Implications for global land-cover datasets , 1994 .

[27]  Kazuaki Miyamoto,et al.  A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 2. Spatial Association and Model Specification Tests , 2002 .

[28]  Helen Couclelis,et al.  From Cellular Automata to Urban Models: New Principles for Model Development and Implementation , 1997 .

[29]  Mark S. Pearce,et al.  Geographically weighted regression: A method for exploring spatial nonstationarity , 1999 .

[30]  Mark M. Fleming Techniques for Estimating Spatially Dependent Discrete Choice Models , 2004 .

[31]  Luc Anselin,et al.  Testing for Spatial Error Autocorrelation in the Presence of Endogenous Regressors , 1997 .

[32]  Eric F. Lambin,et al.  Impact of Macroeconomic Change on Deforestation in South Cameroon: Integration of Household Survey and Remotely-Sensed Data , 2000 .

[33]  P. Bogaert Spatial prediction of categorical variables: the Bayesian maximum entropy approach , 2002 .

[34]  J. LeSage A Family of Geographically Weighted Regression Models , 2004 .

[35]  Congo . Ministère délégué auprès du Premier ministre cha plan Recensement général de la population du Congo, 1974 , 1978 .

[36]  PETER H. VERBURG,et al.  Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model , 2002, Environmental management.

[37]  C. Peppler‐Lisbach,et al.  Predictive modelling of historical and recent land-use patterns , 2003 .

[38]  Benoît Flahaut,et al.  Impact of infrastructure and local environment on road unsafety. Logistic modeling with spatial autocorrelation. , 2004, Accident; analysis and prevention.

[39]  Xia Li,et al.  A Constrained CA Model for the Simulation and Planning of Sustainable Urban Forms by Using GIS , 2001 .

[40]  Richard E. Howitt,et al.  Spatial disaggregation of agricultural production data using maximum entropy , 2003 .

[41]  Paul M. Torrens,et al.  Cellular Automata and Multi-agent Systems as Planning Support Tools , 2003 .

[42]  Dawn C. Parker,et al.  Measuring pattern outcomes in an agent-based model of edge-effect externalities using spatial metrics , 2004 .

[43]  W. Alonso Location And Land Use , 1964 .

[44]  R. White,et al.  High-resolution integrated modelling of the spatial dynamics of urban and regional systems , 2000 .

[45]  Stephen G. Perz,et al.  Secondary forest expansion in the Brazilian Amazon and the refinement of forest transition theory , 2003 .

[46]  Jakob B. Madsen Book review: Basic Econometrics, Damodar N. Gujarati, McGraw-Hill, New York, 1995 , 1998 .

[47]  Jane Southworth,et al.  The Dynamics Of Land-Cover Change In Western Honduras: Spatial Autocorrelation And Temporal Variation , 2001 .

[48]  Takatoshi Tabuchi,et al.  Urban Agglomeration and Dispersion: A Synthesis of Alonso and Krugman* , 1998 .

[49]  K. P. Overmarsa,et al.  Spatial autocorrelation in multi-scale land use models , 2003 .

[50]  Paul Schot,et al.  Land use change modelling: current practice and research priorities , 2004 .

[51]  Hans C. Jessen,et al.  Applied Logistic Regression Analysis , 1996 .

[52]  Jane Southworth,et al.  The dynamics of land‐cover change in western Honduras: exploring spatial and temporal complexity , 2002 .

[53]  P. Verburg,et al.  Downscaling of land use change scenarios to assess the dynamics of European landscapes , 2006 .

[54]  W. Alonso Location and Land Use: Toward a General Theory of Land Rent , 1966 .

[55]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[56]  Daniel P. McMillen,et al.  An empirical model of urban fringe land use , 1989 .

[57]  Torsten Hägerstrand,et al.  Innovation Diffusion As a Spatial Process , 1967 .

[58]  J. S. Andrade,et al.  Modeling urban growth patterns with correlated percolation , 1998, cond-mat/9809431.

[59]  Alan T. Murray,et al.  A stochastically constrained cellular model of urban growth , 2000 .

[60]  Pete Smith,et al.  A coherent set of future land use change scenarios for Europe , 2006 .