Allosteric Nanobodies Reveal the Dynamic Range and Diverse Mechanisms of GPCR Activation

[1]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[2]  S. Rajagopal,et al.  What is biased efficacy? Defining the relationship between intrinsic efficacy and free energy coupling. , 2014, Trends in pharmacological sciences.

[3]  Ryan T. Strachan,et al.  Divergent Transducer-specific Molecular Efficacies Generate Biased Agonism at a G Protein-coupled Receptor (GPCR)* , 2014, The Journal of Biological Chemistry.

[4]  Ryan T. Strachan,et al.  Regulation of Beta-2-Adrenergic Receptor Function by Conformationally Selective Single-domain Intrabodies , 2013 .

[5]  L. Kay,et al.  Tracing an allosteric pathway regulating the activity of the HslV protease , 2014, Proceedings of the National Academy of Sciences.

[6]  Chris Abell,et al.  A three-stage biophysical screening cascade for fragment-based drug discovery , 2013, Nature Protocols.

[7]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[8]  G. Balboni,et al.  Ligands Raise the Constraint That Limits Constitutive Activation in G Protein-coupled Opioid Receptors* , 2013, The Journal of Biological Chemistry.

[9]  Albert C. Pan,et al.  The Dynamic Process of β2-Adrenergic Receptor Activation , 2013, Cell.

[10]  Ichio Shimada,et al.  Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region , 2012, Nature Communications.

[11]  Kurt Wüthrich,et al.  Biased Signaling Pathways in β2-Adrenergic Receptor Characterized by 19F-NMR , 2012, Science.

[12]  S. Iwata,et al.  G protein-coupled receptor inactivation by an allosteric inverse-agonist antibody , 2011, Nature.

[13]  Kunhong Xiao,et al.  Multiple ligand-specific conformations of the β2-adrenergic receptor. , 2011, Nature chemical biology.

[14]  Sudarshan Rajagopal,et al.  Quantifying Ligand Bias at Seven-Transmembrane Receptors , 2011, Molecular Pharmacology.

[15]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[16]  Gebhard F. X. Schertler,et al.  Two distinct conformations of helix 6 observed in antagonist-bound structures of a β1-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[17]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[18]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[19]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[20]  T. Costa,et al.  Allosteric coupling and conformational fluctuations in proteins. , 2009, Current protein & peptide science.

[21]  Ron O Dror,et al.  Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations , 2009, Proceedings of the National Academy of Sciences.

[22]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[23]  Richard N. Zare,et al.  A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein , 2007, Proceedings of the National Academy of Sciences.

[24]  David Colquhoun,et al.  The quantitative analysis of drug-receptor interactions: a short history. , 2006, Trends in pharmacological sciences.

[25]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[26]  K. Pakdaman,et al.  Complex ligand-protein systems: a globally convergent iterative method for the n×m case , 2001, Journal of mathematical biology.

[27]  J. Ballesteros,et al.  Activation of the β2-Adrenergic Receptor Involves Disruption of an Ionic Lock between the Cytoplasmic Ends of Transmembrane Segments 3 and 6* , 2001, The Journal of Biological Chemistry.

[28]  D. Colquhoun,et al.  Binding, gating, affinity and efficacy: The interpretation of structure‐activity relationships for agonists and of the effects of mutating receptors , 1998, British journal of pharmacology.

[29]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[30]  B. Kobilka Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. , 1995, Analytical biochemistry.

[31]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[32]  R. Lefkowitz,et al.  A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. , 1993, The Journal of biological chemistry.

[33]  F. Ehlert The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. , 1985, Molecular pharmacology.

[34]  A. De Léan,et al.  The ternary complex model. Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. , 1984, Molecular pharmacology.

[35]  R. Lefkowitz,et al.  A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. , 1980, The Journal of biological chemistry.

[36]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[37]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .