User Relevance Feedback in Semantic Information Retrieval

The user dimension is a crucial component in the information retrieval process and for this reason it must be taken into account in planning and technique implementation in information retrieval systems. In this article we present a technique based on relevance feedback to improve the accuracy in an ontology based information retrieval system. Our proposed method combines the semantic information in a general knowledge base with statistical information using relevance feedback. Several experiments and results are presented using a test set constituted of Web pages.

[1]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[2]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[3]  Cyril W. Cleverdon,et al.  Factors determining the performance of indexing systems , 1966 .

[4]  T. Park The Nature of Relevance in Information Retrieval: An Empirical Study , 1993, The Library Quarterly.

[5]  Euripides G. M. Petrakis,et al.  Semantic similarity methods in wordNet and their application to information retrieval on the web , 2005, WIDM '05.

[6]  Ryen W. White,et al.  The Use of Implicit Evidence for Relevance Feedback in Web Retrieval , 2002, ECIR.

[7]  David McLean,et al.  An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources , 2003, IEEE Trans. Knowl. Data Eng..

[8]  Robert M. Losee,et al.  Feedback in Information Retrieval. , 1996 .

[9]  Hector Garcia-Molina,et al.  SIFT - a Tool for Wide-Area Information Dissemination , 1995, USENIX.

[10]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[11]  Pertti Vakkari,et al.  Changes in relevance criteria and problem stages in task performance , 2000, J. Documentation.

[12]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[13]  Alexander Budanitsky,et al.  Lexical Semantic Relatedness and Its Application in Natural Language Processing , 1999 .

[14]  J. K. Suresh,et al.  Towards a Knowledge-Sharing Organization: Some Challenges Faced on the Infosys Journey , 2004 .

[15]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[16]  Stephen P. Harter,et al.  Psychological Relevance and Information Science , 1992, J. Am. Soc. Inf. Sci..

[17]  Mehdi Khosrow-Pour,et al.  Printed at: , 2011 .

[18]  Paul B. Kantor,et al.  Capturing human intelligence in the net , 2000, CACM.

[19]  Douglas W. Oard,et al.  Using Implicit Feedback for User Modeling in Internet and Intranet Searching ϕ , 2000 .

[20]  Peter Ingwersen,et al.  The development of a method for the evaluation of interactive information retrieval systems , 1997, J. Documentation.

[21]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[22]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[23]  Madely du Preez Project Management for Modern Information Systems , 2007 .

[24]  Chanathip Namprempre,et al.  HyPursuit: a hierarchical network search engine that exploits content-link hypertext clustering , 1996, HYPERTEXT '96.

[25]  Farhad Daneshgar,et al.  THE LIBRARY QUARTERLY , 2008 .

[26]  Tefko Saracevic,et al.  RELEVANCE: A review of and a framework for the thinking on the notion in information science , 1997, J. Am. Soc. Inf. Sci..

[27]  Chen Zhang,et al.  User term feedback in interactive text-based image retrieval , 2005, SIGIR '05.

[28]  Carol L. Barry Document Representations and Clues to Document Relevance , 1998, J. Am. Soc. Inf. Sci..

[29]  Timothy W. Finin,et al.  Enabling Technology for Knowledge Sharing , 1991, AI Mag..

[30]  Daniel Eduardo Riesco,et al.  Integrating Domain Analysis into Formal Specifications , 2009 .

[31]  Peter Schäuble,et al.  The Perils of Interpreting Recall and Precision Values , 1991, Information Retrieval.

[32]  Don R. Swanson,et al.  Subjective versus Objective Relevance in Bibliographic Retrieval Systems , 1986, The Library Quarterly.

[33]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[34]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[35]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .