A ferroelectric and ferroelastic 3D hexahedral curvilinear finite element

An isoparametric 3D electromechanical hexahedral finite element integrating a 3D phenomenological ferroelectric and ferroelastic constitutive law for domain switching effects is proposed. The model presents two internal variables which are the ferroelectric polarization (related to the electric field) and the ferroelastic strain (related to the mechanical stress). An implicit integration technique of the constitutive equations based on the return-mapping algorithm is developed. The mechanical strain tensor and the electric field vector are expressed in a curvilinear coordinate system in order to handle the transverse isotropy behavior of ferroelectric ceramics. The hexahedral finite element is implemented into the commercial finite element code Abaqus® via the subroutine user element. Some linear (piezoelectric) and non linear (ferroelectric and ferroelastic) benchmarks are considered as validation tests.

[1]  Chad M. Landis,et al.  A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .

[2]  Robert M. McMeeking,et al.  A phenomenological constitutive law for the behaviour of ferroelectric ceramics , 1999 .

[3]  Sven Klinkel,et al.  A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications , 2008 .

[4]  M. Kamlah,et al.  Investigations of the Nonlinear Behavior of Piezoceramic Hollow Cylinders , 2006 .

[5]  Chee-Sung Park,et al.  Helical-shaped piezoelectric motor using thermoplastic co-extrusion process , 2010 .

[6]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects. III: Parameter identification , 1989 .

[7]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[8]  Tarak Ben Zineb,et al.  Constitutive Law for Ferroelastic and Ferroelectric Piezoceramics , 2005 .

[9]  Anthony G. Evans,et al.  Nonlinear Deformation of Ferroelectric Ceramics , 1993 .

[10]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—II. Poling of ceramics , 1988 .

[11]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .

[12]  Norman A. Fleck,et al.  The simulation of switching in polycrystalline ferroelectric ceramics , 1998 .

[13]  Pavel M. Chaplya,et al.  Compression of piezoelectric ceramic at constant electric field: Energy absorption through non-180° domain-wall motion , 2002 .

[14]  Marc Kamlah,et al.  Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior , 2001 .

[15]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[16]  Tarak Ben Zineb,et al.  Finite element analysis of a multilayer piezoelectric actuator taking into account the ferroelectric and ferroelastic behaviors , 2006 .

[17]  Marc Kamlah,et al.  Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model , 2005 .

[18]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[19]  Y. H. Chen,et al.  Electrophoretic deposition and characterization of helical piezoelectric actuator , 2008 .

[20]  K. Härdtl,et al.  Ferroelastic Properties of Lead Zirconate Titanate Ceramics , 2005 .

[21]  Ayech Benjeddou,et al.  A FSDT—MITC Piezoelectric Shell Finite Element with Ferroelectric Non-linearity , 2009 .

[22]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[23]  Sven Klinkel,et al.  A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics , 2006 .

[24]  Wei Chen,et al.  A micro-electro-mechanical model for polarization switching of ferroelectric materials , 1998 .