Glycan microarray technologies: tools to survey host specificity of influenza viruses

New technologies are urgently required for rapid surveillance of the current H5N1 avian influenza A outbreaks to gauge the potential for adaptation of the virus to the human population, a crucial step in the emergence of pandemic influenza virus strains. Owing to the species-specific nature of the interaction between the virus and host glycans, attention has recently focused on novel glycan array technologies that can rapidly assess virus receptor specificity and the potential emergence of human-adapted H5N1 viruses.

[1]  R. McKenna,et al.  Identification of the Sialic Acid Structures Recognized by Minute Virus of Mice and the Role of Binding Affinity in Virulence Adaptation* , 2006, Journal of Biological Chemistry.

[2]  Maureen E. Taylor,et al.  Selective Binding of the Scavenger Receptor C-type Lectin to Lewisx Trisaccharide and Related Glycan Ligands* , 2005, Journal of Biological Chemistry.

[3]  N V Bovin,et al.  Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6'-sialyl(N-acetyllactosamine). , 1997, Virology.

[4]  J. Marth,et al.  Masking of CD22 by cis ligands does not prevent redistribution of CD22 to sites of cell contact. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Steinman,et al.  High and low af ® nity carbohydrate ligands revealed for murine SIGN-R 1 by carbohydrate array and cell binding approaches , and differing speci ® cities for SIGN-R 3 and langerin , 2022 .

[6]  Shaoyi Liu,et al.  Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells , 2002, Nature Biotechnology.

[7]  S. Gordon,et al.  Ligands for the β-Glucan Receptor, Dectin-1, Assigned Using “Designer” Microarrays of Oligosaccharide Probes (Neoglycolipids) Generated from Glucan Polysaccharides* , 2006, Journal of Biological Chemistry.

[8]  Niall Johnson,et al.  Updating the Accounts: Global Mortality of the 1918-1920 "Spanish" Influenza Pandemic , 2002, Bulletin of the history of medicine.

[9]  James C Paulson,et al.  Sweet spots in functional glycomics , 2006, Nature chemical biology.

[10]  H. Kato,et al.  The hemagglutinins of the human influenza viruses A and B recognize different receptor microdomains. , 1987, Biochimica et biophysica acta.

[11]  R. Lamb,et al.  Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation , 2006, Nature.

[12]  J. Taubenberger,et al.  Molecular virology: Was the 1918 pandemic caused by a bird flu? Was the 1918 flu avian in origin? (Reply) , 2006, Nature.

[13]  Thomas A Kost,et al.  Baculovirus as versatile vectors for protein expression in insect and mammalian cells , 2005, Nature Biotechnology.

[14]  J. Paulson,et al.  Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. , 1983, Virology.

[15]  P. Crocker Siglecs in innate immunity. , 2005, Current opinion in pharmacology.

[16]  M. Disney,et al.  The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. , 2004, Chemistry & biology.

[17]  James A. Smagala,et al.  Experimental Evaluation of the FluChip Diagnostic Microarray for Influenza Virus Surveillance , 2006, Journal of Clinical Microbiology.

[18]  Yoshihiro Kawaoka,et al.  Avian flu: Influenza virus receptors in the human airway , 2006, Nature.

[19]  G. N. Rogers,et al.  Receptor binding properties of human and animal H1 influenza virus isolates. , 1989, Virology.

[20]  Ola Blixt,et al.  Carbohydrate profiling reveals a distinctive role for the C-type lectin MGL in the recognition of helminth parasites and tumor antigens by dendritic cells. , 2005, International immunology.

[21]  M. Matrosovich,et al.  A solid-phase enzyme-linked assay for influenza virus receptor-binding activity. , 1992, Journal of virological methods.

[22]  J. Skehel,et al.  Host-mediated selection of influenza virus receptor variants. Sialic acid-alpha 2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-alpha 2,3Gal-specific wild type in ovo. , 1985, The Journal of biological chemistry.

[23]  R. Steinman,et al.  High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. , 2004, International immunology.

[24]  R. Kammerer,et al.  Stabilization of short collagen-like triple helices by protein engineering. , 2001, Journal of molecular biology.

[25]  Yoshihiro Kawaoka,et al.  Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals , 2000, Journal of Virology.

[26]  Nicolai V Bovin,et al.  Glycan Array Screening Reveals a Candidate Ligand for Siglec-8* , 2005, Journal of Biological Chemistry.

[27]  Siamon Gordon,et al.  The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. , 2006, Glycobiology.

[28]  D. Cyranoski Bird flu spreads among Java's pigs , 2005, Nature.

[29]  C. Scholtissek,et al.  The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. , 1985, Virology.

[30]  James A. Smagala,et al.  Robust Sequence Selection Method Used To Develop the FluChip Diagnostic Microarray for Influenza Virus , 2006, Journal of Clinical Microbiology.

[31]  Yoshihiro Kawaoka,et al.  Molecular Basis for the Generation in Pigs of Influenza A Viruses with Pandemic Potential , 1998, Journal of Virology.

[32]  S. Pileri,et al.  Cancer‐associated carbohydrate identification in Hodgkin's lymphoma by carbohydrate array profiling , 2006, International journal of cancer.

[33]  J. Skehel,et al.  Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. , 1994, Biochemistry.

[34]  Gabriele Neumann,et al.  Host Range Restriction and Pathogenicity in the Context of Influenza Pandemic , 2006, Emerging infectious diseases.

[35]  E. Korchagina,et al.  Synthesis of polymeric neoglycoconjugates based onN-substituted polyacrylamides , 1993, Glycoconjugate Journal.

[36]  Ten Feizi,et al.  Oligosaccharide microarrays to decipher the glyco code , 2004, Nature Reviews Molecular Cell Biology.

[37]  J. Paulson,et al.  Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. , 1993, Virus research.

[38]  D. Pepper,et al.  Substituted Sialic Acid Prosthetic Groups as Determinants of Viral Hemagglutination , 1969, Journal of virology.

[39]  James C Paulson,et al.  Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. , 2006, Journal of molecular biology.

[40]  A. Klimov,et al.  Evolution of the receptor binding phenotype of influenza A (H5) viruses. , 2006, Virology.

[41]  A. Gibbs,et al.  Molecular virology: Was the 1918 pandemic caused by a bird flu? , 2006, Nature.

[42]  J. Gildersleeve,et al.  Carbohydrate Array Analysis of Anti‐Tn Antibodies and Lectins Reveals Unexpected Specificities: Implications for Diagnostic and Vaccine Development , 2005, Chembiochem : a European journal of chemical biology.

[43]  N. Cox,et al.  Avian Influenza (H5N1) Viruses Isolated from Humans in Asia in 2004 Exhibit Increased Virulence in Mammals , 2005, Journal of Virology.

[44]  Ya Ha,et al.  H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes , 2002, The EMBO journal.

[45]  James C Paulson,et al.  Cell surface biology mediated by low affinity multivalent protein-glycan interactions. , 2004, Current opinion in chemical biology.

[46]  Yong Poovorawan,et al.  Avian Influenza H5N1 in Tigers and Leopards , 2004, Emerging infectious diseases.

[47]  J. Wieruszeski,et al.  Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. , 1994, The Journal of biological chemistry.

[48]  R. Webster,et al.  H5N1 chicken influenza viruses display a high binding affinity for Neu5Acα2-3Galβ1-4(6-HSO3)GlcNAc-containing receptors , 2004 .

[49]  R. Webster,et al.  Differences between influenza virus receptors on target cells of duck and chicken , 2002, Archives of Virology.

[50]  D. Pérez,et al.  Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. , 2006, Virology.

[51]  Y. Guan,et al.  Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004 , 2006, Journal of Virology.

[52]  Ian A. Wilson,et al.  Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus , 2006, Science.

[53]  Thijs Kuiken,et al.  Avian H5N1 Influenza in Cats , 2004, Science.

[54]  Thorsten Wolff,et al.  Importance of hemagglutinin glycosylation for the biological functions of influenza virus. , 2001, Virus research.

[55]  R. Webby,et al.  Use of Semiconductor-Based Oligonucleotide Microarrays for Influenza A Virus Subtype Identification and Sequencing , 2006, Journal of Clinical Microbiology.

[56]  Jeffery K. Taubenberger,et al.  Characterization of the 1918 influenza virus polymerase genes , 2005, Nature.

[57]  Hiroaki Tateno,et al.  Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6'-sulfo-sialyl Lewis X as a preferred glycan ligand. , 2005, Glycobiology.

[58]  Yoshihiro Kawaoka,et al.  [Influenza virus receptors in the human airway]. , 2006, Uirusu.

[59]  Nicolai Bovin,et al.  Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. , 2005, Virology.

[60]  A. Varki,et al.  Human-specific Regulation of α2–6-linked Sialic Acids* , 2003, Journal of Biological Chemistry.

[61]  S. Teneberg,et al.  Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. , 1997, Virology.

[62]  H. Klenk,et al.  Human and avian influenza viruses target different cell types in cultures of human airway epithelium. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  N. Bovin,et al.  Design of carbohydrate multiarrays. , 2006, Biochimica et biophysica acta.

[64]  Chi-Huey Wong,et al.  Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Ian A. Wilson,et al.  A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity , 2005, Journal of Virology.

[66]  Thijs Kuiken,et al.  H5N1 Virus Attachment to Lower Respiratory Tract , 2006, Science.

[67]  T. Kuiken,et al.  Feline friend or potential foe? , 2006, Nature.

[68]  Nir Dotan,et al.  Intact cell adhesion to glycan microarrays. , 2003, Glycobiology.

[69]  David E. Swayne,et al.  Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus , 2005, Science.

[70]  M. Hood,et al.  Molecular virology: Was the 1918 flu avian in origin? , 2006, Nature.

[71]  Yi Guan,et al.  Lethality to Ferrets of H5N1 Influenza Viruses Isolated from Humans and Poultry in 2004 , 2005, Journal of Virology.

[72]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[73]  N. Bovin,et al.  Hydrogel glycan microarrays. , 2005, Analytical biochemistry.