Regulation of the High-Affinity NO3− Uptake System by NRT1.1-Mediated NO3− Demand Signaling in Arabidopsis[W]

The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} transport system (HATS) that plays a crucial role in \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} uptake by the plant. Although NRT2.1 was known to be induced by \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} and feedback repressed by reduced nitrogen (N) metabolites, NRT2.1 is surprisingly up-regulated when \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} concentration decreases to a low level (<0.5 mm) in media containing a high concentration of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{{+}}\) \end{document} or Gln (≥1 mm). The NRT3.1 gene, encoding another key component of the HATS, displays the same response pattern. This revealed that both NRT2.1 and NRT3.1 are coordinately down-regulated by high external \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} availability through a mechanism independent from that involving N metabolites. We show here that repression of both genes by high \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} is specifically mediated by the NRT1.1 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} transporter. This mechanism warrants that either NRT1.1 or NRT2.1 is active in taking up \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} in the presence of a reduced N source. Under low \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}/\mathrm{high{\,}NH}_{4}^{{+}}\) \end{document} provision, NRT1.1-mediated repression of NRT2.1/NRT3.1 is relieved, which allows reactivation of the HATS. Analysis of atnrt2.1 mutants showed that this constitutes a crucial adaptive response against \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{{+}}\) \end{document} toxicity because \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} taken up by the HATS in this situation prevents the detrimental effects of pure \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{{+}}\) \end{document} nutrition. It is thus hypothesized that NRT1.1-mediated regulation of NRT2.1/NRT3.1 is a mechanism aiming to satisfy a specific \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} demand of the plant in relation to the various specific roles that \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document} plays, in addition to being a N source. A new model is proposed for regulation of the HATS, involving both feedback repression by N metabolites and NRT1.1-mediated repression by high \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{{-}}\) \end{document}.

[1]  B. Forde Local and long-range signaling pathways regulating plant responses to nitrate. , 2002, Annual review of plant biology.

[2]  N. Crawford,et al.  CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. , 1996, The Plant cell.

[3]  Y. Tsay,et al.  Cloning and Functional Characterization of an Arabidopsis Nitrate Transporter Gene That Encodes a Constitutive Component of Low-Affinity Uptake , 1999, Plant Cell.

[4]  A. Miller,et al.  TRANSPORTERS RESPONSIBLE FOR THE UPTAKE AND PARTITIONING OF NITROGENOUS SOLUTES. , 2001, Annual review of plant physiology and plant molecular biology.

[5]  C. Givan Metabolic detoxification of ammonia in tissues of higher plants , 1979 .

[6]  B. Charrier,et al.  Expression Profiling of the Whole Arabidopsis Shaggy-Like Kinase Multigene Family by Real-Time Reverse Transcriptase-Polymerase Chain Reaction1 , 2002, Plant Physiology.

[7]  O. Massenet,et al.  Iron induces ferritin synthesis in maize plantlets , 1992, Plant Molecular Biology.

[8]  F. Daniel-Vedele,et al.  Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display , 1999, Planta.

[9]  Miguel Cerezo,et al.  Regulation of Root Ion Transporters by Photosynthesis: Functional Importance and Relation with Hexokinase Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.013516. , 2003, The Plant Cell Online.

[10]  F. Daniel-Vedele,et al.  Nitrate transport: a key step in nitrate assimilation. , 1998, Current opinion in plant biology.

[11]  Kirk,et al.  Nitrate-ammonium synergism in rice. A subcellular flux analysis , 1999, Plant physiology.

[12]  N. Crawford,et al.  High-Affinity Nitrate Transport in Roots of Arabidopsis Depends on Expression of the NAR2-Like Gene AtNRT3.11 , 2006, Plant Physiology.

[13]  M. Okamoto,et al.  Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana. , 1999, The Plant journal : for cell and molecular biology.

[14]  T. Ruth,et al.  Studies of the Regulation of Nitrate Influx by Barley Seedlings Using NO(3). , 1989, Plant physiology.

[15]  N. Crawford,et al.  Molecular and physiological aspects of nitrate uptake in plants , 1998 .

[16]  F. Daniel-Vedele,et al.  The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Jing-Jiang Zhou,et al.  A two-component high-affinity nitrate uptake system in barley. , 2004, The Plant journal : for cell and molecular biology.

[18]  Rongchen Wang,et al.  The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  F. Daniel-Vedele,et al.  Analysis of the NRT2 Nitrate Transporter Family in Arabidopsis. Structure and Gene Expression , 2002, Plant Physiology.

[20]  H. Reisenauer,et al.  Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both , 1973, Plant and Soil.

[21]  N. Crawford,et al.  The herbicide sensitivity gene CHL1 of arabidopsis encodes a nitrate-inducible nitrate transporter , 1993, Cell.

[22]  S. Chaillou,et al.  Influence of nitrate on uptake of ammonium by nitrogen-depleted soybean: is the effect located in roots or shoots? , 1994 .

[23]  A. Gojon,et al.  An Arabidopsis T‐DNA mutant affected in Nrt2 genes is impaired in nitrate uptake , 2001, FEBS letters.

[24]  W. Frommer,et al.  The molecular physiology of ammonium uptake and retrieval. , 2000, Current opinion in plant biology.

[25]  T. Tibbitts,et al.  Study of various NH4+/NO3- mixtures for enhancing growth of potatoes. , 1993, Journal of plant nutrition.

[26]  R. Tischner,et al.  Induction of a high-capacity nitrate-uptake mechanism in barley roots prompted by nitrate uptake through a constitutive low-capacity mechanism , 1988, Planta.

[27]  M. Okamoto,et al.  Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. , 2003, Plant & cell physiology.

[28]  F. Below,et al.  Mixed Nitrogen Nutrition and Productivity of Wheat Grown in Hydroponics , 1989 .

[29]  P. Tillard,et al.  Differential regulation of the NO3- and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. , 2001, The Plant journal : for cell and molecular biology.

[30]  E. Fernández,et al.  Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii , 2004, Plant Molecular Biology.

[31]  B. Ney,et al.  Modeling Nitrogen Uptake in Oilseed Rape cv Capitol during a Growth Cycle Using Influx Kinetics of Root Nitrate Transport Systems and Field Experimental Data , 2004, Plant Physiology.

[32]  R. J. Davenport,et al.  Ammonium toxicity and the real cost of transport. , 2001, Trends in plant science.

[33]  G. Neumann,et al.  Root-derived cytokinins as long-distance signals for NO3--induced stimulation of leaf growth. , 2005, Journal of experimental botany.

[34]  C. Mackown,et al.  Development of accelerated net nitrate uptake : effects of nitrate concentration and exposure time. , 1988, Plant physiology.

[35]  P. Tillard,et al.  Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage , 2003, Plant Molecular Biology.

[36]  Cécile Fizames,et al.  Transcript Profiling in the chl1-5 Mutant of Arabidopsis Reveals a Role of the Nitrate Transporter NRT1.1 in the Regulation of Another Nitrate Transporter, NRT2.1w⃞ , 2004, The Plant Cell Online.

[37]  B. Touraine,et al.  NO3- and ClO3- Fluxes in the chl1-5 Mutant of Arabidopsis thaliana (Does the CHL1-5 Gene Encode a Low-Affinity NO3- Transporter?) , 1997, Plant physiology.

[38]  N. Crawford,et al.  Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Tillard,et al.  A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis1 , 2006, Plant Physiology.

[40]  W. Frommer,et al.  Three Functional Transporters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots , 1999, Plant Cell.

[41]  H. Sakakibara Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants , 2003, Journal of Plant Research.

[42]  W. Vaalburg,et al.  Nitrate and ammonium influxes in soybean (Glycine max) roots: direct comparison of 13N and 15N tracing , 1996 .

[43]  H. Kronzucker,et al.  Atamt1 Gene Expression and Nh 4 + Uptake in Roots of Arabidopsis Thaliana: Evidence for Regulation by Root Glutamine Levels , 2022 .

[44]  Jing-Jiang Zhou,et al.  A high affinity nitrate transport system from Chlamydomonas requires two gene products , 2000, FEBS letters.

[45]  F. Daniel-Vedele,et al.  Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. , 1999, The Plant journal : for cell and molecular biology.

[46]  S. Filleur,et al.  Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply , 2004, Photosynthesis Research.

[47]  B. Feil,et al.  Root morphology and nitrogen uptake of maize simultaneously supplied with ammonium and nitrate in a split-root system , 1993 .

[48]  J. J. Human,et al.  Effect of time of application and nitrate: ammonium ratio on maize grain yield, grain N concentration and soil mineral N concentration in a semi-arid region , 1993 .

[49]  P. Tillard,et al.  Major alterations of the regulation of root NO(3)(-) uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. , 2001, Plant physiology.

[50]  B. Touraine,et al.  N Demand and the Regulation of Nitrate Uptake , 1994, Plant physiology.

[51]  F. Daniel-Vedele,et al.  Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration , 2004, Planta.

[52]  N. Crawford,et al.  Nitrate: nutrient and signal for plant growth. , 1995, The Plant cell.

[53]  J. Morot-Gaudry,et al.  Nitrate and ammonium nutrition in plants , 1987 .

[54]  B. Forde,et al.  Nitrate transporters in plants: structure, function and regulation. , 2000, Biochimica et biophysica acta.

[55]  Y. Tsay,et al.  Switching between the two action modes of the dual‐affinity nitrate transporter CHL1 by phosphorylation , 2003, The EMBO journal.

[56]  M. Stitt,et al.  Nitrate regulation of metabolism and growth. , 1999, Current opinion in plant biology.

[57]  P W Barlow,et al.  Dual pathways for regulation of root branching by nitrate. , 1999, Proceedings of the National Academy of Sciences of the United States of America.