Importance of the Ornibactin and Pyochelin Siderophore Transport Systems in Burkholderia cenocepacia Lung Infections

ABSTRACT Previously, orbA, the gene encoding the outer membrane receptor for ferric-ornibactin, was identified in Burkholderia cenocepacia K56-2, a strain which produces ornibactin, salicylic acid, and negligible amounts of pyochelin. A K56-2 orbA mutant was less virulent than the parent strain in a rat agar bead infection model. In this study, an orbA mutant of B. cenocepacia Pc715j which produces pyochelin in addition to ornibactin and salicylic acid was constructed. The gene encoding the outer membrane receptor for ferric-pyochelin (fptA) was also identified. An fptA mutant was constructed in Pc715j and shown to be deficient in [59Fe]pyochelin uptake. A 75-kDa iron-regulated protein was identified in outer membrane preparations of Pc715j that was absent in outer membrane preparations of Pc715jfptA::tp. Pc715jfptA::tp and Pc715jorbA::tp produced smaller amounts of their corresponding siderophores. Both Pc715jorbA::tp and Pc715jfptA::tp were able to grow in iron starvation conditions in vitro. In the agar bead model, the Pc715jorbA::tp mutant was cleared from the lung, indicating that the pyochelin uptake system does not compensate for the absence of a functional ornibactin system. Pc715jfptA::tp persisted in rat lung infections in numbers similar to those of the parent strain, indicating that the ferric-ornibactin uptake system could compensate for the defect in ferric-pyochelin uptake in vivo. These studies suggest that the ornibactin uptake system is the most important siderophore-mediated iron transport system in B. cenocepacia lung infections.

[1]  D. Heinrichs,et al.  Cloning and sequence analysis of a gene (pchR) encoding an AraC family activator of pyochelin and ferripyochelin receptor synthesis in Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[2]  G. Jung,et al.  Ornibactins—a new family of siderophores from Pseudomonas , 2004, Biometals.

[3]  M. Guerinot Microbial iron transport. , 1994, Annual review of microbiology.

[4]  R. Ankenbauer,et al.  FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors , 1994, Journal of bacteriology.

[5]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[6]  C. Ratledge,et al.  Uptake of salicylic acid into mycobactin S by growing cells of Mycobacterium smegmatis , 1970, FEBS letters.

[7]  T. J. Brickman,et al.  The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin , 1996, Journal of bacteriology.

[8]  Tom Coenye,et al.  Diversity and significance of Burkholderia species occupying diverse ecological niches. , 2003, Environmental microbiology.

[9]  J. M. Meyer,et al.  The Fluorescent Pigment of Pseudomonas fluorescens : Biosynthesis, Purification and Physicochemical Properties , 1978 .

[10]  V. de Lorenzo,et al.  Functional Analysis of PvdS, an Iron Starvation Sigma Factor of Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[11]  G. Winkelmann,et al.  Ornibactin production and transport properties in strains of Burkholderia vietnamiensis and Burkholderia cepacia (formerly Pseudomonas cepacia) , 1995, Biometals.

[12]  C. D. Cox,et al.  Isolation and characterization of Pseudomonas aeruginosa mutants requiring salicylic acid for pyochelin biosynthesis , 1988, Journal of bacteriology.

[13]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[14]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[15]  P. Weisbeek,et al.  Role for the outer membrane ferric siderophore receptor PupB in signal transduction across the bacterial cell envelope. , 1994, The EMBO journal.

[16]  H. Schweizer,et al.  A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. , 1998, Gene.

[17]  P. Weisbeek,et al.  Identification and characterization of the pupB gene encoding an inducible ferric‐pseudobactin receptor of Pseudomonas putida WCS358 , 1993, Molecular microbiology.

[18]  D. Woods,et al.  Purification and characterization of an extracellular protease from Pseudomonas cepacia , 1989, Infection and immunity.

[19]  Thomas L. Madden,et al.  Applications of network BLAST server. , 1996, Methods in enzymology.

[20]  D. Heinrichs,et al.  Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[21]  P. Sokol,et al.  Physical and structural characterization of yersiniophore, a siderophore produced by clinical isolates of Yersinia enterocolitica , 1996, Biometals.

[22]  S. Lewenza,et al.  Regulation of Ornibactin Biosynthesis andN-Acyl-l-Homoserine Lactone Production by CepR in Burkholderia cepacia , 2001, Journal of bacteriology.

[23]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[24]  G. Jung,et al.  Structure elucidation of yersiniabactin, a siderophore from highly virulent Yersinia strains , 1995 .

[25]  C. D. Cox,et al.  Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin , 1997, Infection and immunity.

[26]  S. Morse,et al.  The role of iron-binding proteins in the survival of pathogenic bacteria. , 1994, Annual review of nutrition.

[27]  K. Brown,et al.  Iron transport in Mycobacterium smegmatis: a restricted role for salicylic acid in the extracellular environment. , 1974, Biochimica et biophysica acta.

[28]  E. Greenberg,et al.  Quorum Sensing in Burkholderia cepacia: Identification of the LuxRI Homologs CepRI , 1999, Journal of bacteriology.

[29]  J. Lipuma,et al.  Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium , 1997, Journal of clinical microbiology.

[30]  H. Cunliffe,et al.  Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor , 1995, Journal of bacteriology.

[31]  J. A. Bass,et al.  A rat model of chronic respiratory infection with Pseudomonas aeruginosa. , 2015, The American review of respiratory disease.

[32]  A. Cox,et al.  Siderophore Production by Cystic Fibrosis Isolates of Burkholderia cepacia , 1998, Infection and Immunity.

[33]  D. DeShazer,et al.  Broad-host-range cloning and cassette vectors based on the R388 trimethoprim resistance gene. , 1996, BioTechniques.

[34]  P. Weisbeek,et al.  Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358: involvement of a transcriptional activator and of the Fur protein , 1995, Molecular microbiology.

[35]  P. Sokol,et al.  Isolation of a novel siderophore from Pseudomonas cepacia. , 1992, Journal of medical microbiology.

[36]  C. Reimmann,et al.  Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. , 1998, Microbiology.

[37]  P. Visca,et al.  Iron-regulated salicylate synthesis by Pseudomonas spp. , 1993, Journal of general microbiology.

[38]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[39]  C. D. Cox,et al.  Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. , 1990, The Journal of clinical investigation.

[40]  V. Braun,et al.  Sequence of the fhuE outer‐membrane receptor gene of Escherichia coli K12 and properties of mutants , 1990, Molecular microbiology.

[41]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[42]  H. Su,et al.  The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  F. O'Gara,et al.  Iron‐responsive gene expression in Pseudomonas fluorescens M114; cloning and characterization of a transcription‐activating factor, PbrA , 1995, Molecular microbiology.

[44]  D. Helinski,et al.  Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[45]  C. Walsh,et al.  Essential PchG-Dependent Reduction in Pyochelin Biosynthesis of Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[46]  Adam Baldwin,et al.  Burkholderia cepacia complex infection in patients with cystic fibrosis. , 2002, Journal of medical microbiology.

[47]  S. Miyoshi,et al.  Structure of vulnibactin, a new polyamine-containing siderophore from Vibrio vulnificus , 1994, Biometals.

[48]  Tom Coenye,et al.  Taxonomy and Identification of the Burkholderia cepacia Complex , 2001, Journal of Clinical Microbiology.

[49]  H. Nitanai,et al.  Impact of Siderophore Production onPseudomonas aeruginosa Infections in Immunosuppressed Mice , 2000, Infection and Immunity.

[50]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[51]  J. Neilands,et al.  Siderophores: Structure and Function of Microbial Iron Transport Compounds (*) , 1995, The Journal of Biological Chemistry.

[52]  D. Woods,et al.  Effect of pyochelin on Pseudomonas cepacia respiratory infections. , 1988, Microbial pathogenesis.

[53]  V. Modi,et al.  Isolation and Characterization of Siderophores from Azospirillum lipoferum D-2 , 1986 .

[54]  D. Hohnadel,et al.  Cepabactin from Pseudomonas cepacia, a new type of siderophore. , 1989, Journal of general microbiology.

[55]  C. Corbett,et al.  Identification of a Siderophore Receptor Required for Ferric Ornibactin Uptake in Burkholderia cepacia , 2000, Infection and Immunity.

[56]  C. D. Cox,et al.  Isolation of an iron-binding compound from Pseudomonas aeruginosa , 1979, Journal of bacteriology.

[57]  C. Ratledge,et al.  Salicylic acid is not a bacterial siderophore: a theoretical study , 2000, Biometals.

[58]  P. Sokol Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia , 1986, Journal of clinical microbiology.

[59]  P. Vandamme,et al.  Diagnostically and Experimentally Useful Panel of Strains from the Burkholderia cepacia Complex , 2000, Journal of Clinical Microbiology.

[60]  J. H. Crosa Genetics and molecular biology of siderophore-mediated iron transport in bacteria. , 1989, Microbiological reviews.

[61]  R. Ankenbauer,et al.  Cloning of the outer membrane high-affinity Fe(III)-pyochelin receptor of Pseudomonas aeruginosa , 1992, Journal of bacteriology.

[62]  J. M. Meyer,et al.  Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHAO. , 1992, BioFactors.

[63]  George Pickett,et al.  Superfluidity: A new twist to an old story , 2000, Nature.

[64]  J. Tommassen,et al.  The ferric‐pseudobactin receptor PupA of Pseudomonas putida WCS358: homology to TonB‐dependent Escherichia coli receptors and specificity of the protein , 1991, Molecular microbiology.

[65]  C. Ratledge,et al.  The accumulation of salicylic acid by mycobacteria during growth on an iron-deficient medium. , 1962, The Biochemical journal.

[66]  D. Woods,et al.  Role of Ornibactin Biosynthesis in the Virulence ofBurkholderia cepacia: Characterization of pvdA, the Gene Encoding l-OrnithineN5-Oxygenase , 1999, Infection and Immunity.

[67]  A. W. Smith,et al.  Siderophore-specific induction of iron uptake in Pseudomonas aeruginosa. , 1992, Journal of general microbiology.

[68]  J. Sadoff,et al.  Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization , 1980, Infection and immunity.

[69]  T. J. Brickman,et al.  Essential Role of the Iron-Regulated Outer Membrane Receptor FauA in Alcaligin Siderophore-Mediated Iron Uptake inBordetella Species , 1999, Journal of bacteriology.

[70]  D. Heinrichs,et al.  PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor , 1996, Journal of bacteriology.

[71]  P. Vandamme,et al.  Burkholderia cepacia: medical, taxonomic and ecological issues. , 1996, Journal of medical microbiology.

[72]  Tom Coenye,et al.  Burkholderia cenocepacia sp. nov.--a new twist to an old story. , 2003, Research in microbiology.