Convergence analysis of Taylor models and McCormick-Taylor models
暂无分享,去创建一个
[1] J. Eckmann,et al. A computer-assisted proof of universality for area-preserving maps , 1984 .
[2] M. Berz,et al. TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .
[3] Christodoulos A Floudas,et al. Global minimum potential energy conformations of small molecules , 1994, J. Glob. Optim..
[4] Martin Berz,et al. SUPPRESSION OF THE WRAPPING EFFECT BY TAYLOR MODEL- BASED VERIFIED INTEGRATORS: LONG-TERM STABILIZATION BY PRECONDITIONING , 2011 .
[5] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[6] Garth P. McCormick,et al. Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..
[7] Christodoulos A. Floudas,et al. Tight convex underestimators for $${{\mathcal C}^2}$$-continuous problems: I. univariate functions , 2008, J. Glob. Optim..
[8] Christodoulos A. Floudas,et al. A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs , 2004, J. Glob. Optim..
[9] Stefan Friedrich,et al. Topology , 2019, Arch. Formal Proofs.
[10] G. Alefeld,et al. Interval analysis: theory and applications , 2000 .
[11] A. Neumaier,et al. A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .
[12] Daniel Scholz,et al. Theoretical rate of convergence for interval inclusion functions , 2012, J. Glob. Optim..
[13] Chrysanthos E. Gounaris,et al. Tight convex underestimators for C 2 -continuous problems: II. multivariate functions. , 2008 .
[14] Christodoulos A. Floudas,et al. Tight convex underestimators for $${\mathcal{C}^2}$$ -continuous problems: II. multivariate functions , 2008, J. Glob. Optim..
[15] S. Yau. Mathematics and its applications , 2002 .
[16] Leo Liberti,et al. Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..
[17] Alexander Mitsos,et al. Convergence rate of McCormick relaxations , 2012, J. Glob. Optim..
[18] Paul I. Barton,et al. McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..
[19] A. Neumaier. Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.
[20] R. Baker Kearfott,et al. The cluster problem in multivariate global optimization , 1994, J. Glob. Optim..
[21] Martin Berz,et al. 5. Remainder Differential Algebras and Their Applications , 1996 .
[22] Kyoko Makino,et al. Rigorous analysis of nonlinear motion in particle accelerators , 1998 .
[23] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[24] Martin Berz,et al. Efficient Control of the Dependency Problem Based on Taylor Model Methods , 1999, Reliab. Comput..
[25] Martin Berz,et al. SUPPRESSION OF THE WRAPPING EFFECT BY TAYLOR MODEL-BASED VERIFIED INTEGRATORS : LONG-TERM STABILIZATION BY SHRINK WRAPPING , 2006 .
[26] Martin Berz. From Taylor series to Taylor models , 1997 .
[27] Jon G. Rokne,et al. Computer Methods for the Range of Functions , 1984 .
[28] Edward M. B. Smith,et al. A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .
[29] Nikolaos V. Sahinidis,et al. Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..
[30] A. M. Sahlodin,et al. Convex/concave relaxations of parametric ODEs using Taylor models , 2011, Comput. Chem. Eng..
[31] Martin Berz,et al. Computational differentiation : techniques, applications, and tools , 1996 .
[32] Martin Berz,et al. Computation and Application of Taylor Polynomials with Interval Remainder Bounds , 1998, Reliab. Comput..
[33] Kaisheng Du,et al. The Cluster Problem in Global Optimization: the Univariate Case , 1993 .
[34] M. Stadtherr,et al. Validated solutions of initial value problems for parametric ODEs , 2007 .
[35] Daniel Scholz,et al. The theoretical and empirical rate of convergence for geometric branch-and-bound methods , 2010, J. Glob. Optim..
[36] Arnold Neumaier,et al. Taylor Forms—Use and Limits , 2003, Reliab. Comput..
[37] Nedialko S. Nedialkov,et al. On Taylor Model Based Integration of ODEs , 2007, SIAM J. Numer. Anal..