Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach

Abstract Precipitable water vapor (PWV) estimation from Global Positioning System (GPS) has been extensively studied and used for meteorological applications. However PWV estimation using the emerging BeiDou Navigation Satellite System (BDS) is very limited. In this paper the PWV estimation strategy and the evaluation of the results inferred from ground-based BDS observations using Precise Point Positioning (PPP) method are presented. BDS and GPS data from 10 stations distributed in the Asia–Pacific and West Indian Ocean regions during the year 2013 are processed using the PANDA (Position and Navigation Data Analyst) software package. The BDS-PWV and GPS-PWV are derived from the BDS-only and GPS-only observations, respectively. The PPP positioning differences between BDS-only and GPS-only show a standard deviation (STD)

[1]  Harald Schuh,et al.  Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System , 2013, Sensors.

[2]  Xiaotao Li,et al.  Precise Point Positioning with the BeiDou Navigation Satellite System , 2014, Sensors.

[3]  Liu Jing-nan,et al.  PANDA software and its preliminary result of positioning and orbit determination , 2003, Wuhan University Journal of Natural Sciences.

[4]  Jan P. Weiss,et al.  Single receiver phase ambiguity resolution with GPS data , 2010 .

[5]  Christian Rocken,et al.  GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology , 1995 .

[6]  C. Shi,et al.  Precise orbit determination of BeiDou constellation based on BETS and MGEX network , 2014, Scientific Reports.

[7]  Peter Steigenberger,et al.  Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas , 2007 .

[8]  Henrik Vedel,et al.  Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean , 2003 .

[9]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[10]  Rebecca J. Ross,et al.  Estimating mean weighted temperature of the atmosphere for Global Positioning System applications , 1997 .

[11]  Douglas Hunt,et al.  Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT‐3 mission , 2007 .

[12]  Yanxiong Liu,et al.  Improving accuracy of near real‐time Precipitable Water Vapor estimation with the IGS predicted orbits , 2002 .

[13]  Yibin Yao,et al.  Global empirical model for mapping zenith wet delays onto precipitable water , 2013, Journal of Geodesy.

[14]  J. Saastamoinen Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites , 2013 .

[15]  Yuei-An Liou,et al.  Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes , 2001 .

[16]  Maorong Ge,et al.  Estimating Zenith Tropospheric Delays from BeiDou Navigation Satellite System Observations , 2013, Sensors.

[17]  Chuang Shi,et al.  Precise orbit determination of Beidou Satellites with precise positioning , 2012, Science China Earth Sciences.

[18]  H. Schuh,et al.  Short Note: A global model of pressure and temperature for geodetic applications , 2007 .

[19]  Peter Steigenberger,et al.  Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system , 2013, GPS Solutions.

[20]  Jingnan Liu,et al.  Precise Point Positioning Using Combined Beidou and GPS Observations , 2013 .

[21]  Peter Steigenberger,et al.  Multi-technique comparison of troposphere zenith delays and gradients during CONT08 , 2011 .

[22]  Pierre Héroux,et al.  Precise Point Positioning Using IGS Orbit and Clock Products , 2001, GPS Solutions.

[23]  Paul Tregoning,et al.  Accuracy of absolute precipitable water vapor estimates from GPS observations , 1998 .

[24]  Geoffrey Blewitt,et al.  An Automatic Editing Algorithm for GPS data , 1990 .

[25]  Hans van der Marel,et al.  Integrated atmospheric water vapor estimates from a regional GPS network , 2002 .

[26]  Jennifer S. Haase,et al.  Reducing satellite orbit error effects in near real‐time GPS zenith tropospheric delay estimation for meteorology , 2000 .

[27]  Jan Askne,et al.  Estimation of tropospheric delay for microwaves from surface weather data , 1987 .

[28]  Marie-Noëlle Bouin,et al.  Comparison of ground‐based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa , 2007 .

[29]  Jean-Pierre Aubagnac,et al.  Comparison of Near–Real Time Estimates of Integrated Water Vapor Derived with GPS, Radiosondes, and Microwave Radiometer , 2005 .

[30]  Carine Bruyninx Comparing GPS-only with GPS + GLONASS positioning in a regional permanent GNSS network , 2007 .

[31]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[32]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[33]  Pak Wai Chan,et al.  A multi‐sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong , 2013 .

[34]  V. Cachorro,et al.  Improvement in PWV estimation from GPS due to the absolute calibration of antenna phase center variations , 2010 .

[35]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[36]  G. Gendt,et al.  Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations , 2008 .

[37]  Henrik Vedel,et al.  Combination methods of tropospheric time series , 2011 .

[38]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[39]  Zhizhao Liu,et al.  An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques , 2013 .

[40]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[41]  Qile Zhao,et al.  Initial results of precise orbit and clock determination for COMPASS navigation satellite system , 2013, Journal of Geodesy.

[42]  Maorong Ge,et al.  The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS , 2013 .

[43]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .