1 Urine in clinical proteomics

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Urine in clinical proteomics. Stéphane Decramer, Anne Gonzalez de Peredo, Benjamin Breuil, Harald Mischak, Bernard Monsarrat, Jean-Loup Bascands, Joost P Schanstra

[1]  X. Brannmjk Capillary , 2020, Definitions.

[2]  Zhengyu Jin,et al.  Current applications and challenges of radiomics in urothelial cancer , 2019, Chinese Journal of Academic Radiology.

[3]  A. Vlahou,et al.  Establishment of a European Network for Urine and Kidney Proteomics. , 2008, Journal of proteomics.

[4]  A. Dominiczak,et al.  CE‐MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics , 2008, Proteomics. Clinical applications.

[5]  D. Maahs,et al.  The urinary proteome in diabetes and diabetes‐associated complications: New ways to assess disease progression and evaluate therapy , 2008, Proteomics. Clinical applications.

[6]  V. Thongboonkerd,et al.  Towards Standard Protocols and Guidelines for Urine Proteomics: A Report on the Human Kidney and Urine Proteome Project (HKUPP) Symposium and Workshop 6 October 2007, Seoul, Korea and 1 November 2007, San Francisco, CA, USA , 2008, Proteomics.

[7]  H. Mischak,et al.  Discovery and validation of urinary biomarkers for prostate cancer , 2008, Proteomics. Clinical applications.

[8]  Lennart Martens,et al.  Analysis of the experimental detection of central nervous system‐related genes in human brain and cerebrospinal fluid datasets , 2008, Proteomics.

[9]  Walter Kolch,et al.  Urinary Proteomic Biomarkers in Coronary Artery Disease*S , 2008, Molecular & Cellular Proteomics.

[10]  A. Vlahou,et al.  Challenges of using mass spectrometry as a bladder cancer biomarker discovery platform , 2008, World Journal of Urology.

[11]  S. Carr,et al.  Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution*S , 2007, Molecular & Cellular Proteomics.

[12]  B. Monsarrat,et al.  The invisible proteome: how to capture the low abundance proteins via combinatorial ligand libraries , 2007 .

[13]  A. Dominiczak,et al.  Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. , 2007, Journal of proteome research.

[14]  V. Thongboonkerd,et al.  Bacterial overgrowth affects urinary proteome analysis: recommendation for centrifugation, temperature, duration, and the use of preservatives during sample collection. , 2007, Journal of proteome research.

[15]  P. Righetti,et al.  Exploring the platelet proteome via combinatorial, hexapeptide ligand libraries. , 2007, Journal of proteome research.

[16]  F. Algaba,et al.  Searching urinary tumor markers for bladder cancer using a two-dimensional differential gel electrophoresis (2D-DIGE) approach. , 2007, Journal of proteome research.

[17]  Juri Rappsilber,et al.  Proteomic analysis of human blood serum using peptide library beads. , 2007, Journal of proteome research.

[18]  Visith Thongboonkerd,et al.  Practical points in urinary proteomics. , 2007, Journal of proteome research.

[19]  W. Gwinner,et al.  Renal transplant rejection markers , 2007, World Journal of Urology.

[20]  J. Schanstra,et al.  Non-invasive markers of ureteropelvic junction obstruction , 2007, World Journal of Urology.

[21]  V. Thongboonkerd Recent progress in urinary proteomics , 2007, Proteomics. Clinical applications.

[22]  Denis Hochstrasser,et al.  How shall we use the proteomics toolbox for biomarker discovery? , 2007, Journal of proteome research.

[23]  K. Rossing Progression and remission of nephropathy in type 2 diabetes: new strategies of treatment and monitoring. , 2007, Danish medical bulletin.

[24]  Harald Mischak,et al.  Advances in urinary proteome analysis and biomarker discovery. , 2007, Journal of the American Society of Nephrology : JASN.

[25]  M. Goligorsky,et al.  Characterization of Urinary Peptide Biomarkers of Acute Rejection in Renal Allografts , 2007, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[26]  S. Baumann,et al.  Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2007, Clinical chemistry.

[27]  M. Girolami,et al.  Clinical proteomics: A need to define the field and to begin to set adequate standards , 2007, Proteomics. Clinical applications.

[28]  O. Nemirovskiy,et al.  Discovery and development of a type II collagen neoepitope (TIINE) biomarker for matrix metalloproteinase activity: from in vitro to in vivo. , 2007, Analytical biochemistry.

[29]  Lennart Martens,et al.  Annotating the human proteome: beyond establishing a parts list. , 2007, Biochimica et biophysica acta.

[30]  Terence C W Poon,et al.  Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices , 2007, Expert review of proteomics.

[31]  F. Scolari,et al.  Repetitive Fragmentation Products of Albumin and α1-Antitrypsin in Glomerular Diseases Associated with Nephrotic Syndrome , 2006 .

[32]  Richard D. Smith,et al.  Advances and Challenges in Liquid Chromatography-Mass Spectrometry-based Proteomics Profiling for Clinical Applications* , 2006, Molecular & Cellular Proteomics.

[33]  Ruedi Aebersold,et al.  Challenges and Opportunities in Proteomics Data Analysis* , 2006, Molecular & Cellular Proteomics.

[34]  H. Mischak,et al.  High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS , 2006, Proteomics.

[35]  M. Mann,et al.  The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins , 2006, Genome Biology.

[36]  Steven A Carr,et al.  Protein biomarker discovery and validation: the long and uncertain path to clinical utility , 2006, Nature Biotechnology.

[37]  E. Hoorn,et al.  The Application of DIGE-Based Proteomics to Renal Physiology , 2006, Nephron Physiology.

[38]  M. Mann,et al.  Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system , 2006, Genome Biology.

[39]  H. Mischak,et al.  Biomarker discovery by CE‐MS enables sequence analysis via MS/MS with platform‐independent separation , 2006, Electrophoresis.

[40]  Michael Liebman,et al.  Proteomic profiling of human urine using multi-dimensional protein identification technology. , 2006, Journal of chromatography. A.

[41]  J. Dear,et al.  Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. , 2006, Kidney international.

[42]  H. Mischak,et al.  Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis , 2006, Nature Medicine.

[43]  V. Thulasiraman,et al.  Reducing protein concentration range of biological samples using solid-phase ligand libraries. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[44]  H. Frierson,et al.  Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. , 2006, The Lancet. Oncology.

[45]  Wei Sun,et al.  Concanavalin A-captured Glycoproteins in Healthy Human Urine *S , 2006, Molecular & Cellular Proteomics.

[46]  Jue Wang,et al.  Human urine proteome analysis by three separation approaches , 2005, Proteomics.

[47]  H. Huland,et al.  Stage‐dependent increase of orosomucoid and zinc‐alpha2‐glycoprotein in urinary bladder cancer , 2005, Proteomics.

[48]  W. Kolch,et al.  Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. , 2005, Mass spectrometry reviews.

[49]  K. Oofusa,et al.  Proteome analysis of gelatin-bound urinary proteins from patients with bladder cancers. , 2005, European urology.

[50]  M. J. Chalmers,et al.  Combined top-down and bottom-up mass spectrometric approach to characterization of biomarkers for renal disease. , 2005, Analytical chemistry.

[51]  Juri Rappsilber,et al.  Exploring the hidden human urinary proteome via ligand library beads. , 2005, Journal of proteome research.

[52]  H. Mischak,et al.  Detection of Acute Tubulointerstitial Rejection by Proteomic Analysis of Urinary Samples in Renal Transplant Recipients , 2005, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[53]  Ronald J Moore,et al.  Characterization of the human blood plasma proteome , 2005, Proteomics.

[54]  A. Ganser,et al.  Online coupling of capillary electrophoresis with mass spectrometry for the identification of biomarkers for clinical diagnosis , 2005, Expert review of proteomics.

[55]  Liliana Gheorghiu,et al.  Reduction of the concentration difference of proteins in biological liquids using a library of combinatorial ligands , 2005, Electrophoresis.

[56]  Eugene A. Kapp,et al.  Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly‐available database , 2005, Proteomics.

[57]  Harald Mischak,et al.  Capillary electrophoresis coupled to mass spectrometry for clinical diagnostic purposes , 2005, Electrophoresis.

[58]  H. Mischak,et al.  Identification of urinary protein pattern in type 1 diabetic adolescents with early diabetic nephropathy by a novel combined proteome analysis. , 2005, Journal of diabetes and its complications.

[59]  A. Semjonow,et al.  Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine , 2005, Electrophoresis.

[60]  H. Parving,et al.  Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. , 2005, Kidney international.

[61]  H. Mischak,et al.  Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. , 2005, Kidney international.

[62]  Walter Kolch,et al.  Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: Towards new diagnostic and therapeutic approaches , 2005, Electrophoresis.

[63]  J. Listgarten,et al.  Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[64]  Visith Thongboonkerd,et al.  Renal and urinary proteomics: Current applications and challenges , 2005, Proteomics.

[65]  A. Bello,et al.  Chronic kidney disease: the global challenge , 2005, The Lancet.

[66]  M. Kretzler,et al.  Bioinformatic analysis of the urine proteome of acute allograft rejection. , 2004, Journal of the American Society of Nephrology : JASN.

[67]  Thorsten Kaiser,et al.  Proteomic analysis for the assessment of diabetic renal damage in humans. , 2004, Clinical science.

[68]  Ian M Thompson,et al.  Prostate‐specific antigen: A review of the validation of the most commonly used cancer biomarker , 2004, Cancer.

[69]  A. Ganser,et al.  Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. , 2004, Blood.

[70]  L. Greenbaum,et al.  Upper urinary tract: when is obstruction obstruction? , 2004, Current opinion in urology.

[71]  Erika Check,et al.  Proteomics and cancer: Running before we can walk? , 2004, Nature.

[72]  H. Mischak,et al.  Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. , 2004, Kidney international.

[73]  J. Neilson,et al.  Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. , 2004, The Journal of clinical investigation.

[74]  Rembert Pieper,et al.  Characterization of the human urinary proteome: A method for high‐resolution display of urinary proteins on two‐dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots , 2004, Proteomics.

[75]  Richard D. Smith,et al.  FTICR mass spectrometry for qualitative and quantitative bioanalyses. , 2004, Current opinion in biotechnology.

[76]  W. Kolch,et al.  Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. , 2004, Rapid communications in mass spectrometry : RCM.

[77]  P. Selby,et al.  Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. , 2003, Cancer research.

[78]  D. Chan,et al.  Characterization of Renal Allograft Rejection by Urinary Proteomic Analysis , 2003, Annals of surgery.

[79]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[80]  N. Anderson,et al.  The Human Plasma Proteome , 2002, Molecular & Cellular Proteomics.

[81]  A. Nerlich,et al.  Matrix metalloproteinases (MMPs) in breast cancer cell lines of different tumorigenicity. , 2001, Anticancer research.

[82]  R. Wahl,et al.  Towards defining the urinary proteome using liquid chromatography‐tandem mass spectrometry I.Profiling an unfractionated tryptic digest , 2001, Proteomics.

[83]  L. Iorio,et al.  Observations on the Liber medicine orinalibus by Hermogenes , 1999, American Journal of Nephrology.

[84]  B. Honoré,et al.  Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. , 1996, The Journal of urology.

[85]  C. E. Mogensen,et al.  Systemic blood pressure and glomerular leakage with particular reference to diabetes and hypertension , 1994, Journal of internal medicine.

[86]  Y. Chaubey Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .

[87]  P. Vestergaard,et al.  Constancy of urinary creatinine excretion. , 1958, The Journal of laboratory and clinical medicine.

[88]  A. Vlahou,et al.  Urine sample preparation and protein profiling by two-dimensional electrophoresis and matrix-assisted laser desorption ionization time of flight mass spectroscopy. , 2008, Methods in molecular biology.

[89]  Thomas Deufel,et al.  Use of SELDI-TOF mass spectrometry for identification of new biomarkers: potential and limitations. , 2007, Clinical chemistry and laboratory medicine.

[90]  Christian W Klampfl,et al.  Recent advances in the application of capillary electrophoresis with mass spectrometric detection , 2006, Electrophoresis.

[91]  P. Nickerson,et al.  Proteomic-based detection of urine proteins associated with acute renal allograft rejection. , 2004, Journal of the American Society of Nephrology : JASN.

[92]  P. Nickerson,et al.  Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. , 2004, Kidney international.

[93]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .