Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias

[1]  A. Tellier,et al.  Population Level Purifying Selection and Gene Expression Shape Subgenome Evolution in Maize. , 2015, Molecular biology and evolution.

[2]  Andrej A. Arsovski,et al.  Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis1[OPEN] , 2015, Plant Physiology.

[3]  Bryan D. Kolaczkowski,et al.  Adaptive expansion of the maize maternally expressed gene (Meg) family involves changes in expression patterns and protein secondary structures of its members , 2014, BMC Plant Biology.

[4]  Karl G. Kugler,et al.  Genome interplay in the grain transcriptome of hexaploid bread wheat , 2014, Science.

[5]  Nathan M. Springer,et al.  Discovering Functional Modules across Diverse Maize Transcriptomes Using COB, the Co-Expression Browser , 2014, PloS one.

[6]  S. Kelly,et al.  The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize , 2014, Genome research.

[7]  Xiaobo Zhang,et al.  Genome-Wide Identification, Evolution and Expression Analysis of mTERF Gene Family in Maize , 2014, PloS one.

[8]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[9]  M. Freeling,et al.  Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids , 2014, Proceedings of the National Academy of Sciences.

[10]  Doreen Ware,et al.  Regulatory modules controlling maize inflorescence architecture , 2014, Genome research.

[11]  G. Wang,et al.  Genome-wide identification, splicing, and expression analysis of the myosin gene family in maize (Zea mays) , 2013, Journal of experimental botany.

[12]  C. Robin Buell,et al.  Maize Gene Atlas Developed by RNA Sequencing and Comparative Evaluation of Transcriptomes Based on RNA Sequencing and Microarrays , 2013, PloS one.

[13]  S. Magadum,et al.  Gene duplication as a major force in evolution , 2013, Journal of Genetics.

[14]  Ethalinda K. S. Cannon,et al.  Maize Metabolic Network Construction and Transcriptome Analysis , 2013 .

[15]  Yong-Mei Bi,et al.  A Developmental Transcriptional Network for Maize Defines Coexpression Modules1[C][W][OA] , 2013, Plant Physiology.

[16]  M. Lynch,et al.  Evolutionary Significance of Whole-Genome Duplication , 2012 .

[17]  P. Schnable,et al.  Ontogeny of the Maize Shoot Apical Meristem[W][OA] , 2012, Plant Cell.

[18]  Nathan M. Springer,et al.  Reshaping of the maize transcriptome by domestication , 2012, Proceedings of the National Academy of Sciences.

[19]  James C. Schnable,et al.  Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses , 2012, Genome biology and evolution.

[20]  Stephen P. Ficklin,et al.  Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms , 2011, PloS one.

[21]  Gregory J. Baute,et al.  Organ and Cell Type–Specific Complementary Expression Patterns and Regulatory Neofunctionalization between Duplicated Genes in Arabidopsis thaliana , 2011, Genome biology and evolution.

[22]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[23]  F. Feltus,et al.  Gene Coexpression Network Alignment and Conservation of Gene Modules between Two Grass Species: Maize and Rice[C][W][OA] , 2011, Plant Physiology.

[24]  Klaas Vandepoele,et al.  Comparative Network Analysis Reveals That Tissue Specificity and Gene Function Are Important Factors Influencing the Mode of Expression Evolution in Arabidopsis and Rice1[W] , 2011, Plant Physiology.

[25]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[26]  Kazuo Shinozaki,et al.  Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops , 2011, Plant & cell physiology.

[27]  B. Usadel,et al.  PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species[W][OA] , 2011, Plant Cell.

[28]  James C. Schnable,et al.  Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss , 2011, Proceedings of the National Academy of Sciences.

[29]  Andrew Ying-Fei Chang,et al.  Maintenance of duplicate genes and their functional redundancy by reduced expression. , 2010, Trends in genetics : TIG.

[30]  James C. Schnable,et al.  Following Tetraploidy in Maize, a Short Deletion Mechanism Removed Genes Preferentially from One of the Two Homeologs , 2010, PLoS biology.

[31]  Zhou Du,et al.  agriGO: a GO analysis toolkit for the agricultural community , 2010, Nucleic Acids Res..

[32]  Wolfgang Busch,et al.  Omics meet networks - using systems approaches to infer regulatory networks in plants. , 2010, Current opinion in plant biology.

[33]  Lex E. Flagel,et al.  Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. , 2010, The New phytologist.

[34]  David Sankoff,et al.  The collapse of gene complement following whole genome duplication , 2010, BMC Genomics.

[35]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[36]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[37]  Melissa D. Lehti-Shiu,et al.  Evolution of Stress-Regulated Gene Expression in Duplicate Genes of Arabidopsis thaliana , 2009, PLoS genetics.

[38]  Michael Freeling,et al.  Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. , 2009, Annual review of plant biology.

[39]  Olga G. Troyanskaya,et al.  The Sleipnir library for computational functional genomics , 2008, Bioinform..

[40]  Stijn van Dongen,et al.  Graph Clustering Via a Discrete Uncoupling Process , 2008, SIAM J. Matrix Anal. Appl..

[41]  K. Adams,et al.  Expression Partitioning between Genes Duplicated by Polyploidy under Abiotic Stress and during Organ Development , 2007, Current Biology.

[42]  T. Vision,et al.  Divergence in expression between duplicated genes in Arabidopsis. , 2007, Molecular biology and evolution.

[43]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[44]  Steven G. Schroeder,et al.  Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History , 2007, PLoS genetics.

[45]  Olga G. Troyanskaya,et al.  A scalable method for integration and functional analysis of multiple microarray datasets , 2006, Bioinform..

[46]  Brian C. Thomas,et al.  Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. , 2006, Genome research.

[47]  K. H. Wolfe,et al.  Functional Partitioning of Yeast Co-Expression Networks after Genome Duplication , 2006, PLoS biology.

[48]  Jim Leebens-Mack,et al.  Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. , 2006, Molecular biology and evolution.

[49]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[50]  Jeroen Raes,et al.  Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana , 2006, Genome Biology.

[51]  X. Gu,et al.  Expression divergence between duplicate genes. , 2005, Trends in genetics : TIG.

[52]  Richard C. Moore,et al.  The evolutionary dynamics of plant duplicate genes. , 2005, Current opinion in plant biology.

[53]  Jianxin Ma,et al.  Close split of sorghum and maize genome progenitors. , 2004, Genome research.

[54]  Guillaume Blanc,et al.  Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution , 2004, The Plant Cell Online.

[55]  Scott A. Rifkin,et al.  Duplicate genes increase gene expression diversity within and between species , 2004, Nature Genetics.

[56]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[57]  Jianzhi Zhang Evolution by gene duplication: an update , 2003 .

[58]  R. Haselkorn,et al.  Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Xun Gu,et al.  Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution , 2002, Nature Genetics.

[60]  E. Koonin,et al.  Selection in the evolution of gene duplications , 2002, Genome Biology.

[61]  Peifen Zhang,et al.  A Segmental Gene Duplication Generated Differentially Expressed myb-Homologous Genes in Maize , 2000, Plant Cell.

[62]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[63]  S. Hake,et al.  Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. , 2000, Development.

[64]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[65]  L. Girard,et al.  Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the leaf. , 1999, Plant physiology.

[66]  S. Hake,et al.  Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. , 1995, Genes & development.

[67]  A. Hughes The evolution of functionally novel proteins after gene duplication , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[68]  M. Freeling,et al.  Genetic analysis of Rough sheath1 developmental mutants of maize. , 1994, Genetics.

[69]  J. Piatigorsky,et al.  The recruitment of crystallins: new functions precede gene duplication , 1991, Science.

[70]  S. Hake,et al.  The developmental gene Knotted-1 is a member of a maize homeobox gene family , 1991, Nature.

[71]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.