Numerical Analysis of Filter-Based Stabilization for Evolution Equations

We consider filter-based stabilization for evolution equations (in general) and for the Navier--Stokes equations (in particular). The first method we consider is to advance in time one time step by a given method and then to apply an (uncoupled and modular) filter to get the approximation at the new time level. This filter-based stabilization, although algorithmically appealing, is viewed in the literature as introducing far too much numerical dissipation to achieve a quality approximate solution. We show that this is indeed the case. We then consider a modification: Evolve one time step, filter, deconvolve, then relax to get the approximation at the new time step. We give a precise analysis of the numerical diffusion and error in this process and show it has great promise, confirmed in several numerical experiments.

[1]  Volker John,et al.  Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder , 2004 .

[2]  Steven A. Orszag,et al.  The Taylor-Green vortex and fully developed turbulence , 1984 .

[3]  N. Adams,et al.  The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction , 2001 .

[4]  M. Germano Differential filters of elliptic type , 1986 .

[5]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[6]  Andreas Muschinski,et al.  A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES , 1996, Journal of Fluid Mechanics.

[7]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[8]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[9]  Luigi C. Berselli,et al.  Analytical and Numerical Results for the Rational Large Eddy Simulation Model , 2007 .

[10]  Eberhard Zeidler,et al.  Applied Functional Analysis: Applications to Mathematical Physics , 1995 .

[11]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[12]  M. Brachet Direct simulation of three-dimensional turbulence in the Taylor–Green vortex , 1991 .

[13]  N. Adams,et al.  An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows , 2001 .

[14]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[15]  Richard Pasquetti,et al.  Comments on Filter-based stabilization of spectral element methods , 2002 .

[16]  C. Foias,et al.  Energy dissipation in body-forced turbulence , 2001, Journal of Fluid Mechanics.

[17]  John P. Boyd,et al.  Two Comments on Filtering (Artificial Viscosity) for Chebyshev and Legendre Spectral and Spectral Element Methods , 1998 .

[18]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[19]  W. Layton,et al.  NUMERICAL ANALYSIS OF A HIGHER ORDER TIME RELAXATION MODEL OF FLUIDS , 2007 .

[20]  N. Adams,et al.  An approximate deconvolution procedure for large-eddy simulation , 1999 .

[21]  Songul Kaya,et al.  CONVERGENCE ANALYSIS OF THE FINITE ELEMENT METHOD FOR A FUNDAMENTAL MODEL IN TURBULENCE , 2012 .

[22]  M. Breuer Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder , 1998 .

[23]  Dominique Laurence,et al.  Global kinetic energy conservation with unstructured meshes , 2002 .

[24]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[25]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[26]  Julia S. Mullen,et al.  Filtering techniques for complex geometry fluid flows , 1999 .

[27]  A. Dunca,et al.  On the Stolz-Adams Deconvolution Model for the Large-Eddy Simulation of Turbulent Flows , 2006, SIAM J. Math. Anal..

[28]  B. Geurts Inverse modeling for large-eddy simulation , 1997 .

[29]  I. Stanculescu Existence theory of abstract approximate deconvolution models of turbulence , 2008 .

[30]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[31]  A. Leonard,et al.  Deconvolution of Subgrid-Scales for the Simulation of Shock-Turbulence Interaction , 1999 .

[32]  Luigi C. Berselli,et al.  On the Large Eddy Simulation of the Taylor–Green vortex , 2005 .

[33]  Monika Neda,et al.  Truncation of scales by time relaxation , 2007 .

[34]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[35]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[36]  E. Tadmor,et al.  The regularized Chapman-Enskog expansion for scalar conservation laws , 1992 .

[37]  Marc Brachet,et al.  Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows , 1992 .

[38]  Volker John,et al.  Analysis of Numerical Errors in Large Eddy Simulation , 2002, SIAM J. Numer. Anal..

[39]  P. H. Cittert Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II , 1930 .

[40]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[41]  Joseph Mathew,et al.  An explicit filtering method for large eddy simulation of compressible flows , 2003 .

[42]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[43]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[44]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[45]  Leo G. Rebholz,et al.  Numerical analysis and computational testing of a high accuracy Leray‐deconvolution model of turbulence , 2008 .

[46]  Danesh K. Tafti,et al.  Comparison of some upwind-biased high-order formulations with a second-order central-difference scheme for time integration of the incompressible Navier-Stokes equations , 1996 .

[47]  Rosenau,et al.  Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. , 1989, Physical review. A, General physics.

[48]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[49]  Nikolaus A. Adams,et al.  Deconvolution Methods for Subgrid-Scale Approximation in Large-Eddy Simulation , 2001 .

[50]  Ernst Heinrich Hirschel,et al.  Flow Simulation with High-Performance Computers II , 1996 .

[51]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[52]  Julia S. Mullen,et al.  Filter-based stabilization of spectral element methods , 2001 .

[53]  R. Peyret Spectral Methods for Incompressible Viscous Flow , 2002 .

[54]  W. Layton Superconvergence of finite element discretization of time relaxation models of advection , 2007 .

[55]  The Approximate Deconvolution Model for Compressible Flows: Isotropic Turbulence and Shock-Boundary-Layer Interaction , 2002 .

[56]  William J. Layton,et al.  On the accuracy of the finite element method plus time relaxation , 2009, Math. Comput..