The multiferroic phase of DyFeO3: an ab initio study

By performing accurate ab initio density functional theory (DFT) calculations, we study the role of 4f electrons in stabilizing the magnetic-field-induced ferroelectric state of DyFeO3. We confirm that the ferroelectric polarization is driven by an exchange-strictive mechanism, working between adjacent spin-polarized Fe and Dy layers, as suggested by Y Tokunaga (2008 Phys. Rev. Lett. 101 097205). A careful electronic structure analysis suggests that coupling between Dy and Fe spin sublattices is mediated by Dy–d and O–2p hybridization. Our results are robust with respect to the different computational schemes used for d and f localized states, such as the DFT+U method, the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional and the GW approach. Our findings indicate that the interaction between the f and d sublattices might be used to tailor the ferroelectric and magnetic properties of multiferroic compounds.

[1]  T. Schulthess,et al.  Electronic structure and exchange coupling of Mn impurities in III–V semiconductors , 2005 .

[2]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[3]  W. Pickett,et al.  Exchange Coupling in Eu Monochalcogenides from First Principles , 2004, cond-mat/0406229.

[4]  Goddard,et al.  Understanding STM images and EELS spectra of oxides with strongly correlated electrons: a comparison of nickel and uranium oxides , 2000, Micron.

[5]  D. Vanderbilt,et al.  First principles study of improper ferroelectricity in TbMnO3. , 2008, Physical review letters.

[6]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[7]  C. Binek,et al.  Magnetoelectronics with magnetoelectrics , 2005 .

[8]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[9]  G. Kresse,et al.  Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. , 2007, Physical review letters.

[10]  A. Stroppa,et al.  Hybrid functional study of proper and improper multiferroics. , 2009, Physical chemistry chemical physics : PCCP.

[11]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[12]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[13]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[14]  J. P. Remeika,et al.  The crystal chemistry of the rare earth orthoferrites , 1970 .

[15]  G. Sawatzky,et al.  Magnetic interactions and covalency effects in mainly ionic compounds , 1976 .

[16]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[17]  J. Paier,et al.  Hybrid functionals applied to extended systems , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  D. Vanderbilt,et al.  Dependence of electronic polarization on octahedral rotations in TbMnO3 from first principles , 2009, 0908.4367.

[19]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[20]  Georg Kresse,et al.  Fully unconstrained noncollinear magnetism within the projector augmented-wave method , 2000 .

[21]  S. Hagstroem,et al.  4f ELECTRONIC STATES IN THE METALS Nd, Sm, Dy, AND Er STUDIED BY X-RAY PHOTOEMISSION. , 1971 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  Y. Tokura,et al.  Magnetic-field-induced ferroelectric state in DyFeO3. , 2008, Physical review letters.

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  Influence of epitaxial strain on the ferromagnetic semiconductorEuO: First-principles calculations , 2008 .

[26]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[27]  Ishizawa,et al.  Synchrotron X-ray study of the electron density in RFeO3 (R = Nd, Dy). , 1999, Acta crystallographica. Section B, Structural science.

[28]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[29]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[30]  Y. Tokura,et al.  Composite domain walls in a multiferroic perovskite ferrite. , 2009, Nature materials.

[31]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[32]  J. Perez-Mato,et al.  AMPLIMODES: symmetry‐mode analysis on the Bilbao Crystallographic Server , 2009 .

[33]  G. Kresse,et al.  Unraveling the Jahn-Teller effect in Mn-doped GaN using the Heyd-Scuseria-Ernzerhof hybrid functional , 2009, 0904.2140.

[34]  Jiang Hong The GW Method:Basic Principles,Latest Developments and Its Applications for d-and f-Electron Systems , 2010 .

[35]  J. Perdew Orbital functional for exchange and correlation: self-interaction correction to the local density approximation☆ , 1979 .

[36]  A. Mukhin,et al.  Magnetoelectric interactions and phase transitions in a new class of multiferroics with improper electric polarization , 2008 .

[37]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[38]  K. Aizu Possible Species of Ferromagnetic, Ferroelectric, and Ferroelastic Crystals , 1970 .

[39]  K. Tsushima,et al.  Magnetic Symmetry of Rare-Earth Orthochromites and Orthoferrites , 1973 .

[40]  Andreas Savin,et al.  Electron Localization in Solid‐State Structures of the Elements: the Diamond Structure , 1992 .

[41]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[42]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[43]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[44]  S. Wang,et al.  Density functional calculations of lanthanide oxides , 1995 .

[45]  Thomas M Henderson,et al.  Screened hybrid density functionals for solid-state chemistry and physics. , 2009, Physical chemistry chemical physics : PCCP.

[46]  A. Savin,et al.  On the Bonding in Carbosilanes , 1992 .

[47]  T. Kasuya,et al.  Exchange mechanisms in europium chalcogenides , 1970 .

[48]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[49]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[50]  W. M. Temmerman,et al.  Electronic Structure and Elastic Properties of Strongly Correlated Metal Oxides from First Principles: LSDA + U, SIC‐LSDA and EELS Study of UO2 and NiO , 1998 .

[51]  M. Richter REVIEW ARTICLE: Band structure theory of magnetism in 3d-4f compounds , 1998 .

[52]  E. Dagotto,et al.  Dual nature of improper ferroelectricity in a magnetoelectric multiferroic. , 2007, Physical review letters.

[53]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.