A functional approach to heterogeneous computing in embedded systems
暂无分享,去创建一个
Developing programs for embedded systems presents quite a challenge; not only should programs be resource efficient, as they operate under memory and timing constraints, but they should also take full advantage of the hardware to achieve maximum performance. Since performance is such a significant factor in the design of embedded systems, modern systems typically incorporate more than one kind of processing element to benefit from specialized processing capabilities. For such heterogeneous systems the challenge in developing programs is even greater. In this thesis we explore a functional approach to heterogeneous system development as a means to address many of the modularity problems that are typically found in the application of low-level imperative programming for embedded systems. In particular, we explore a staged hardware software co-design language that we name Co-Feldspar and embed in Haskell. The staged approach enables designers to build their applications from reusable components and skeletons while retaining control over much of the generated source code. Furthermore, by embedding the language in Haskell we can exploit its type classes to write not only hardware and software programs, but also generic programs with overloaded instructions and expressions. We demonstrate the usefulness of the functional approach for co-design on a cryptographic example and signal processing filters, and benchmark software and mixed hardware-software implementations. Co-Feldspar currently adopts a monadic interface, which provides an imperative functional programming style that is suitable for explicit memory management and algorithms that rely on a certain evaluation order. For algorithms that are better defined as pure functions operating on immutable values, we provide a signal and array library that extends a monadic language, like Co-Feldspar. These extensions permit a functional style of programming by composing high-level combinators. Our compiler transforms such high-level code into efficient programs with mutating code. In particular, we show how to execute an FFT safely in-place, and how to describe a FIR and IIR filter efficiently as streams. Co-Feldspar’s monadic interface is however quite invasive; not only is the burden of explicit memory management quite heavy on the user, it is also quite easy to shoot on eself in the foot. It is for these reasons that we also explore a dynamic memory management discipline that is based on regions but predictable enough to be of use for embedded systems. Specifically, this thesis introduces a program analysis which annotates values with dynamically allocated memory regions. By limiting our efforts to functional languages that target embedded software, we manage to define a region inference algorithm that is considerably simpler than traditional approaches.