Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities

[1]  Xiaowei He,et al.  Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes , 2017, Nature Photonics.

[2]  J. Reichel,et al.  Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube. , 2017, Nano letters.

[3]  S. Strauf,et al.  Nonmagnetic Quantum Emitters in Boron Nitride with Ultranarrow and Sideband-Free Emission Spectra. , 2017, ACS nano.

[4]  U. Keyser,et al.  Suppressed Quenching of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities , 2016 .

[5]  U. Keyser,et al.  Suppressed Quenching and Strong-Coupling of Purcell-Enhanced Single-Molecule Emission in Plasmonic Nanocavities , 2016, 1612.02611.

[6]  Carsten Rockstuhl,et al.  Fully integrated quantum photonic circuit with an electrically driven light source , 2016, Nature Photonics.

[7]  C. Backes,et al.  Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing , 2016 .

[8]  Tyler T. Clikeman,et al.  Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. , 2016, Nature chemistry.

[9]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[10]  S. Strauf,et al.  Tunable multipole resonances in plasmonic crystals made by four-beam holographic lithography , 2016 .

[11]  J. Reichel,et al.  Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime. , 2015, Physical review letters.

[12]  Xuedan Ma,et al.  Room-temperature single-photon generation from solitary dopants of carbon nanotubes. , 2015, Nature nanotechnology.

[13]  Matthew Pelton,et al.  Modified spontaneous emission in nanophotonic structures , 2015, Nature Photonics.

[14]  S. Strauf,et al.  Strong Acoustic Phonon Localization in Copolymer-Wrapped Carbon Nanotubes. , 2015, ACS nano.

[15]  H. Dai,et al.  Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm. , 2015, Angewandte Chemie.

[16]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[17]  S. Stranks,et al.  Hyperspectral imaging of exciton photoluminescence in individual carbon nanotubes controlled by high magnetic fields. , 2014, Nano letters.

[18]  Christian Bourjau,et al.  Bright, long-lived and coherent excitons in carbon nanotube quantum dots. , 2013, Nature nanotechnology.

[19]  Hervé Rigneault,et al.  A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. , 2013, Nature nanotechnology.

[20]  C. Wong,et al.  Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes , 2013, Nature Communications.

[21]  Wei Li,et al.  Probing and controlling photothermal heat generation in plasmonic nanostructures. , 2013, Nano letters.

[22]  B. Larsen,et al.  High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. , 2013, ACS nano.

[23]  Evelyn L. Hu,et al.  Large spontaneous emission enhancement in plasmonic nanocavities , 2012, Nature Photonics.

[24]  Y. Miyauchi,et al.  Dispersion-Process Effects on the Photoluminescence Quantum Yields of Single-Walled Carbon Nanotubes Dispersed Using Aromatic Polymers , 2012 .

[25]  S. Strauf,et al.  Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. , 2012, Nano letters.

[26]  C. Voisin,et al.  Elastic exciton-exciton scattering in photoexcited carbon nanotubes. , 2011, Physical review letters.

[27]  S. Strauf,et al.  Single quantum dot nanolaser , 2011 .

[28]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[29]  Seung-Gol Lee,et al.  Implementation of surface plasmon resonance planar waveguide sensor system , 2010 .

[30]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[31]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[32]  A Forchel,et al.  Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. , 2009, Physical review letters.

[33]  Vladimir M. Shalaev,et al.  Enhanced localized fluorescence in plasmonic nanoantennae , 2008 .

[34]  Martin Winger,et al.  Photon antibunching in the photoluminescence spectra of a single carbon nanotube. , 2007, Physical review letters.

[35]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[36]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[37]  I. Favero,et al.  Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot , 2006, cond-mat/0610346.

[38]  Jacques Lefebvre,et al.  Photoluminescence imaging of suspended single-walled carbon nanotubes. , 2006, Nano letters.

[39]  Jean-Jacques Greffet,et al.  Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle , 2006 .