Shortened Duration of Global Warming Slowdowns with Elevated Greenhouse Gas Emissions

[1]  K. Taylor,et al.  Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models , 2020, Science Advances.

[2]  E. Roeckner,et al.  Tuning the MPI‐ESM1.2 Global Climate Model to Improve the Match With Instrumental Record Warming by Lowering Its Climate Sensitivity , 2020, Journal of advances in modeling earth systems.

[3]  K. Taylor,et al.  Causes of Higher Climate Sensitivity in CMIP6 Models , 2020, Geophysical Research Letters.

[4]  Stefan Reimann,et al.  The SSP greenhouse gas concentrations and their extensions to 2500 , 2019 .

[5]  F. Otto,et al.  A Limited Role for Unforced Internal Variability in Twentieth-Century Warming , 2019, Journal of Climate.

[6]  G. Meehl,et al.  New insights into natural variability and anthropogenic forcing of global/regional climate evolution , 2019, npj Climate and Atmospheric Science.

[7]  K. Tung,et al.  Global surface warming enhanced by weak Atlantic overturning circulation , 2018, Nature.

[8]  Karl Pfeiffer,et al.  Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States , 2018, Nature Communications.

[9]  A. Fedorov,et al.  The extreme El Niño of 2015–2016 and the end of global warming hiatus , 2017 .

[10]  Renhe Zhang,et al.  Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming , 2017, Scientific Reports.

[11]  B. Stevens,et al.  MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6 , 2017 .

[12]  Stefan Rahmstorf,et al.  Global temperature evolution: recent trends and some pitfalls , 2017 .

[13]  Aixue Hu,et al.  Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends , 2016 .

[14]  Adam A. Scaife,et al.  Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown , 2016 .

[15]  Brian C. O'Neill,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[16]  G. Meehl,et al.  Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation , 2016, Nature Communications.

[17]  Ed Hawkins,et al.  Making sense of the early-2000s warming slowdown , 2016 .

[18]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[19]  J. Willis,et al.  Recent hiatus caused by decadal shift in Indo-Pacific heating , 2015, Science.

[20]  Thomas C. Peterson,et al.  Possible artifacts of data biases in the recent global surface warming hiatus , 2015, Science.

[21]  M. Mann,et al.  Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures , 2015, Science.

[22]  J. Marotzke,et al.  Forcing, feedback and internal variability in global temperature trends , 2015, Nature.

[23]  Shang-Ping Xie,et al.  Decadal modulation of global surface temperature by internal climate variability , 2014 .

[24]  Masahiro Watanabe,et al.  Contribution of natural decadal variability to global warming acceleration and hiatus , 2014 .

[25]  Dara Entekhabi,et al.  Recent Arctic amplification and extreme mid-latitude weather , 2014 .

[26]  M. England,et al.  Drivers of decadal hiatus periods in the 20th and 21st centuries , 2014 .

[27]  Agus Santoso,et al.  Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus , 2014 .

[28]  Gavin A. Schmidt,et al.  Reconciling warming trends , 2014 .

[29]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[30]  Climate science: The cause of the pause , 2013, Nature.

[31]  Yu Kosaka,et al.  Recent global-warming hiatus tied to equatorial Pacific surface cooling , 2013, Nature.

[32]  G. Meehl,et al.  Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation , 2013 .

[33]  Francis W. Zwiers,et al.  Overestimated global warming over the past 20 years , 2013 .

[34]  Jean-Christophe Golaz,et al.  Cloud tuning in a coupled climate model: Impact on 20th century warming , 2013 .

[35]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[36]  J. Curry,et al.  Berkeley Earth Temperature Averaging Process , 2013 .

[37]  Thomas M. Smith,et al.  NOAA's Merged Land-Ocean Surface Temperature Analysis , 2012 .

[38]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[39]  Mathew Barlow,et al.  Arctic warming, increasing snow cover and widespread boreal winter cooling , 2012 .

[40]  Aixue Hu,et al.  Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods , 2011 .

[41]  N. Nakicenovic,et al.  RCP 8.5—A scenario of comparatively high greenhouse gas emissions , 2011 .

[42]  R. Neely,et al.  The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change , 2011, Science.

[43]  Makiko Sato,et al.  Earth's energy imbalance and implications , 2011, 1105.1140.

[44]  Ricardo García-Herrera,et al.  The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe , 2011, Science.

[45]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[46]  Michael F. Wehner,et al.  Is the climate warming or cooling? , 2009 .

[47]  B. Santer,et al.  The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. , 2009 .

[48]  Kevin E. Trenberth,et al.  Atlantic hurricanes and natural variability in 2005 , 2006 .

[49]  D. Lüthi,et al.  The role of increasing temperature variability in European summer heatwaves , 2004, Nature.

[50]  W. G. Strand,et al.  Parallel climate model (PCM) control and transient simulations , 2000 .