Residual driven online mortar mixed finite element methods and applications

In this paper, we develop an online basis enrichment method with the mortar mixed finite element method, using the oversampling technique, to solve for flow problems in highly heterogeneous media. We first compute a coarse grid solution with a certain number of offline basis functions per edge, which are chosen as standard polynomials basis functions. We then iteratively enrich the multiscale solution space with online multiscale basis functions computed by using residuals. The iterative solution converges to the fine scale solution rapidly. We also propose an oversampling online method to achieve faster convergence speed. The oversampling refers to using larger local regions in computing the online multiscale basis functions. We present extensive numerical experiments(including both 2D and 3D) to demonstrate the performance of our methods for both steady state flow, and two-phase flow and transport problems. In particular, for the time dependent two-phase flow and transport problems, we apply the online method to the initial model, without updating basis along the time evolution. Our numerical results demonstrate that by using a few number of online basis functions, one can achieve a fast convergence.

[1]  Yalchin Efendiev,et al.  An online generalized multiscale discontinuous Galerkin method (GMsDGM) for flows in heterogeneous media , 2015, 1504.04417.

[2]  Yalchin Efendiev,et al.  Accurate multiscale finite element methods for two-phase flow simulations , 2006, J. Comput. Phys..

[3]  Eric T. Chung,et al.  An enriched multiscale mortar space for high contrast flow problems , 2016, 1609.02610.

[4]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[5]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[6]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[7]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[8]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Space Based on Homogenization for Heterogeneous Elliptic Problems , 2013, SIAM J. Numer. Anal..

[9]  T. Hou,et al.  Analysis of upscaling absolute permeability , 2002 .

[10]  Yalchin Efendiev,et al.  Adaptive mixed GMsFEM for flows in heterogeneous media , 2015 .

[11]  Todd Arbogast,et al.  Two-level mortar domain decomposition preconditioners for heterogeneous elliptic problems , 2015 .

[12]  Victor M. Calo,et al.  Fast multiscale reservoir simulations using POD-DEIM model reduction , 2015, ANSS 2015.

[13]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[14]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[15]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[16]  Yalchin Efendiev,et al.  Residual-driven online generalized multiscale finite element methods , 2015, J. Comput. Phys..

[17]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[18]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[19]  Lois Mansfield Damped Jacobi Preconditioning and Coarse Grid Deflation for Conjugate Gradient Iteration on Parallel Computers , 1991, SIAM J. Sci. Comput..

[20]  L. J. Durfolsky Numerical calculation of equivalent grid block permeability tensors of heterogeneous porous media : Water Resour Res V27, N5, May 1991, P299–708 , 1991 .

[21]  Hailong Xiao,et al.  Multiscale mortar mixed finite element methods for flow problems in highly heterogeneous porous media , 2013 .

[22]  Yalchin Efendiev,et al.  Online Adaptive Local-Global Model Reduction for Flows in Heterogeneous Porous Media , 2016, Comput..

[23]  Yalchin Efendiev,et al.  Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..

[24]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[25]  Knut-Andreas Lie,et al.  Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels , 2005 .

[26]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[27]  Mary F. Wheeler,et al.  A multiscale mortar multipoint flux mixed finite element method , 2012 .