Multi-Marginal Optimal Mass Transport with Partial Information

During recent decades, there has been a substantial development in optimal mass transport theory and methods. In this work, we consider multi-marginal problems wherein only partial information of each marginal is available, which is a setup common in many inverse problems in, e.g., imaging and spectral estimation. By considering an entropy regularized approximation of the original transport problem, we propose an algorithm corresponding to a block-coordinate ascent of the dual problem, where Newton's algorithm is used to solve the sub-problems. In order to make this computationally tractable for large-scale settings, we utilize the tensor structure that arises in practical problems, allowing for computing projections of the multi-marginal transport plan using only matrix-vector operations of relatively small matrices. As illustrating examples, we apply the resulting method to tracking and barycenter problems in spatial spectral estimation. In particular, we show that the optimal mass transport framework allows for fusing information from different time steps, as well as from different sensor arrays, also when the sensor arrays are not jointly calibrated. Furthermore, we show that by incorporating knowledge of underlying dynamics in tracking scenarios, one may arrive at accurate spectral estimates, as well as faithful reconstructions of spectra corresponding to unobserved time points.

[1]  Chong Meng Samson See,et al.  Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays , 2004, IEEE Transactions on Signal Processing.

[2]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[3]  Yu Hen Hu,et al.  Detection, classification, and tracking of targets , 2002, IEEE Signal Process. Mag..

[4]  Richard Sinkhorn Diagonal equivalence to matrices with prescribed row and column sums. II , 1967 .

[5]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[6]  R. Gray,et al.  Distortion measures for speech processing , 1980 .

[7]  Y. Brenier Generalized solutions and hydrostatic approximation of the Euler equations , 2008 .

[8]  Andreas Jakobsson,et al.  Interpolation and Extrapolation of Toeplitz Matrices via Optimal Mass Transport , 2017, IEEE Transactions on Signal Processing.

[9]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[10]  Marc Moonen,et al.  On the Modeling of Rectangular Geometries in Room Acoustic Simulations , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[11]  Tryphon T. Georgiou,et al.  Matrix-valued Monge-Kantorovich optimal mass transport , 2013, 52nd IEEE Conference on Decision and Control.

[12]  Johan Karlsson,et al.  Tracking and Sensor Fusion in Direction of Arrival Estimation Using Optimal Mass Transport , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[13]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[14]  Andreas Jakobsson,et al.  Generalized sparse covariance-based estimation , 2016, Signal Process..

[15]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[16]  Johan Karlsson,et al.  Generalized Sinkhorn Iterations for Regularizing Inverse Problems Using Optimal Mass Transport , 2016, SIAM J. Imaging Sci..

[17]  Marius Pesavento,et al.  Direction finding in partly calibrated sensor arrays composed of multiple subarrays , 2002, IEEE Trans. Signal Process..

[18]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[19]  Daniel R. Fuhrmann,et al.  Generalizing MUSIC and MVDR for multiple noncoherent arrays , 2004, IEEE Transactions on Signal Processing.

[20]  Yu Hen Hu,et al.  Passive source localization from array covariance matrices via joint sparse representations , 2017, Neurocomputing.

[21]  Don H. Johnson,et al.  Array Signal Processing: Concepts and Techniques , 1993 .

[22]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[23]  G. Crooks On Measures of Entropy and Information , 2015 .

[24]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[25]  Julien Rabin,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.

[26]  C. Villani Optimal Transport: Old and New , 2008 .

[27]  Carola-Bibiane Schönlieb,et al.  Imaging with Kantorovich-Rubinstein Discrepancy , 2014, SIAM J. Imaging Sci..

[28]  Tryphon T. Georgiou,et al.  Optimal Transport Over a Linear Dynamical System , 2015, IEEE Transactions on Automatic Control.

[29]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[30]  S Mierisová,et al.  MR spectroscopy quantitation: a review of frequency domain methods , 2001, NMR in biomedicine.

[31]  Tryphon T. Georgiou,et al.  Solution of the general moment problem via a one-parameter imbedding , 2005, IEEE Transactions on Automatic Control.

[32]  Yi Hu,et al.  A perceptually motivated approach for speech enhancement , 2003, IEEE Trans. Speech Audio Process..

[33]  Yongxin Chen,et al.  State Tracking of Linear Ensembles via Optimal Mass Transport , 2018, IEEE Control Systems Letters.

[34]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.

[35]  Johan Karlsson,et al.  Non-coherent Sensor Fusion via Entropy Regularized Optimal Mass Transport , 2019, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[36]  Johan Karlsson,et al.  Metrics for Power Spectra: An Axiomatic Approach , 2009, IEEE Transactions on Signal Processing.

[37]  Pascal Frossard,et al.  Graph Signal Representation with Wasserstein Barycenters , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[38]  Tryphon T. Georgiou,et al.  Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques , 2005, IEEE Transactions on Biomedical Engineering.

[39]  Thomas Kailath,et al.  ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[40]  L.M. Kaplan,et al.  Global node selection for localization in a distributed sensor network , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[41]  Joakim Jaldén,et al.  Cell Detection by Functional Inverse Diffusion and Non-Negative Group Sparsity—Part II: Proximal Optimization and Performance Evaluation , 2017, IEEE Transactions on Signal Processing.

[42]  Abdelhak M. Zoubir,et al.  Non-Coherent Direction-of-Arrival Estimation Using Partly Calibrated Arrays , 2017, IEEE Transactions on Signal Processing.

[43]  Zhi-Quan Luo,et al.  Geometric Methods for Spectral Analysis , 2012, IEEE Transactions on Signal Processing.

[44]  Gustavo K. Rohde,et al.  Optimal Mass Transport: Signal processing and machine-learning applications , 2017, IEEE Signal Processing Magazine.

[45]  Michele Pavon,et al.  Hellinger Versus Kullback–Leibler Multivariable Spectrum Approximation , 2007, IEEE Transactions on Automatic Control.

[46]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[47]  Steven Haker,et al.  Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..

[48]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[49]  Tryphon T. Georgiou,et al.  On the Geometry of Covariance Matrices , 2013, IEEE Signal Processing Letters.

[50]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[51]  G. Carlier,et al.  Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach , 2017 .

[52]  Tryphon T. Georgiou,et al.  Regularization and Interpolation of Positive Matrices , 2018, IEEE Transactions on Automatic Control.

[53]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[54]  Mathias Beiglböck,et al.  Model-independent bounds for option prices—a mass transport approach , 2011, Finance Stochastics.

[55]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[56]  Brendan Pass Multi-marginal optimal transport: theory and applications , 2014, 1406.0026.

[57]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[58]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[59]  J. Lorenz,et al.  On the scaling of multidimensional matrices , 1989 .

[60]  Jean-Luc Starck,et al.  Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning , 2017, SIAM J. Imaging Sci..

[61]  Johan Karlsson,et al.  Learning to solve inverse problems using Wasserstein loss , 2017, ArXiv.

[62]  Tryphon T. Georgiou,et al.  On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint , 2014, J. Optim. Theory Appl..

[63]  Allen R. Tannenbaum,et al.  Texture Mapping via Optimal Mass Transport , 2010, IEEE Transactions on Visualization and Computer Graphics.

[64]  François-Xavier Vialard,et al.  Scaling algorithms for unbalanced optimal transport problems , 2017, Math. Comput..