Security engineering of nanostructures and nanomaterials

Proliferation of electronics and their increasing connectivity pose formidable challenges for information security. At the most fundamental level, nanostructures and nanomaterials offer an unprecedented opportunity to introduce new approaches to securing electronic devices. First, we discuss engineering nanomaterials, (e.g., carbon nanotubes (CNTs), graphene, and layered transition metal dichalcogenides (TMDs)) to make unclonable cryptographic primitives. These security primitives not only can supplement existing solutions in silicon integrated circuits (ICs) but can also be used for emerging applications in flexible and wearable electronics. Second, we discuss security engineering of advanced nanostructures such as reactive materials.

[1]  Michael Liehr,et al.  Physically unclonable cryptographic primitives using self-assembled carbon nanotubes. , 2016, Nature nanotechnology.

[2]  Davood Shahrjerdi,et al.  High device yield carbon nanotube NFETs for high-performance logic applications , 2011, 2011 International Electron Devices Meeting.

[3]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[4]  Sean W. Smith,et al.  Building the IBM 4758 Secure Coprocessor , 2001, Computer.

[5]  William M. Daley,et al.  Security Requirements for Cryptographic Modules , 1999 .

[6]  W. Haensch,et al.  High-density integration of carbon nanotubes via chemical self-assembly. , 2012, Nature nanotechnology.

[7]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[8]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[9]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[10]  Sedat Akleylek,et al.  Security requirements for cryptographic modules , 2013 .

[11]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[12]  Rekha Govindaraj,et al.  Spintronics for associative computation and hardware security , 2015, 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS).

[13]  Michael T. Niemier,et al.  Leveraging Emerging Technology for Hardware Security - Case Study on Silicon Nanowire FETs and Graphene SymFETs , 2014, 2014 IEEE 23rd Asian Test Symposium.

[14]  T. P. Weihs,et al.  Characterizing solid-state ignition of runaway chemical reactions in Ni-Al nanoscale multilayers under uniform heating , 2015 .

[15]  Yan Li,et al.  Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.

[16]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[17]  Cliff Wang,et al.  Introduction to Hardware Security and Trust , 2011 .

[18]  Srinivas Devadas,et al.  Security Based on Physical Unclonability and Disorder , 2012 .

[19]  Davood Shahrjerdi,et al.  Variability in carbon nanotube transistors: improving device-to-device consistency. , 2012, ACS nano.

[20]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[21]  Jeyavijayan Rajendran,et al.  Shielding and securing integrated circuits with sensors , 2014, 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[22]  Omar M. Knio,et al.  Effects of physical properties of components on reactive nanolayer joining , 2005 .

[23]  F Schwierz,et al.  Two-dimensional materials and their prospects in transistor electronics. , 2015, Nanoscale.

[24]  Davood Shahrjerdi,et al.  High-performance air-stable n-type carbon nanotube transistors with erbium contacts. , 2013, ACS nano.

[25]  W. Haensch,et al.  Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors. , 2015, ACS nano.

[26]  Ramesh Karri,et al.  A Primer on Hardware Security: Models, Methods, and Metrics , 2014, Proceedings of the IEEE.

[27]  Anirudh Iyengar,et al.  Domain Wall Magnets for Embedded Memory and Hardware Security , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[28]  S. Banerjee,et al.  Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric , 2009, 0901.2901.

[29]  Jean-Pierre Seifert,et al.  Cloning Physically Unclonable Functions , 2013, 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).

[30]  T. P. Weihs,et al.  Irradiation-enhanced reactivity of multilayer Al/Ni nanomaterials. , 2015, ACS applied materials & interfaces.

[31]  Michael T. Niemier,et al.  Enhancing hardware security with emerging transistor technologies , 2016, 2016 International Great Lakes Symposium on VLSI (GLSVLSI).

[32]  Sanjukta Bhanja,et al.  A novel geometry based MRAM PUF , 2014, 14th IEEE International Conference on Nanotechnology.

[33]  Ali Afzali,et al.  High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography. , 2013, ACS nano.

[34]  Miodrag Potkonjak,et al.  Nano Meets Security: Exploring Nanoelectronic Devices for Security Applications , 2015, Proceedings of the IEEE.