ON GENERALIZED-CONVEX CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION

In this paper, we consider multi-objective optimization problems involving not necessarily convex constraints and componentwise generalized-convex (e.g., semi-strictly quasi-convex, quasi-convex, or explicitly quasi-convex) vector-valued objective functions that are acting between a real linear topological pre-image space and a finite dimensional image space. For these multi-objective optimization problems, we show that the set of (strictly, weakly) efficient solutions can be computed completely by using at most two corresponding multi-objective optimization problems with a new feasible set that is a convex upper set of the original feasible set. Our approach relies on the fact that the original feasible set can be described using level sets of a certain realvalued function (a kind of penalization function). Finally, we apply our approach to problems where the constraints are given by a system of inequalities with a finite number of constraint functions.

[1]  Boris S. Mordukhovich,et al.  SUBGRADIENTS OF DISTANCE FUNCTIONS AT OUT-OF-SET POINTS , 2006 .

[2]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[3]  A. Cambini,et al.  Generalized Convexity and Optimization: Theory and Applications , 2008 .

[4]  Gabriele Eichfelder,et al.  Variable Ordering Structures in Vector Optimization , 2014, Vector Optimization.

[5]  Kathrin Klamroth,et al.  Constrained optimization using multiple objective programming , 2007, J. Glob. Optim..

[6]  Christiane Tammer,et al.  On Some Methods to Derive Necessary and Sufficient Optimality Conditions in Vector Optimization , 2017, J. Optim. Theory Appl..

[7]  Nicolae Popovici,et al.  Pareto reducible multicriteria optimization problems , 2005 .

[8]  N. BoissardLACO Structure of Efficient Sets for Strictly Quasi Convex Objectives , 1994 .

[9]  C. Gerth,et al.  Nonconvex separation theorems and some applications in vector optimization , 1990 .

[10]  J. Hiriart-Urruty New concepts in nondifferentiable programming , 1979 .

[11]  G. Giorgi,et al.  Mathematics of Optimization: Smooth and Nonsmooth Case , 2004 .

[12]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[13]  Christiane Tammer,et al.  Relationships between constrained and unconstrained multi-objective optimization and application in location theory , 2016, Math. Methods Oper. Res..

[14]  C. G. Liu,et al.  Merit functions in vector optimization , 2009, Math. Program..

[15]  M. Mäkelä,et al.  On Nonsmooth Multiobjective Optimality Conditions with Generalized Convexities , 2014 .

[16]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[17]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[18]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[19]  Constantin Zalinescu,et al.  Set-valued Optimization - An Introduction with Applications , 2014, Vector Optimization.

[20]  Marius Durea,et al.  A new penalization tool in scalar and vector optimizations , 2014 .

[21]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[22]  Ovidiu Bagdasar,et al.  Local maximum points of explicitly quasiconvex functions , 2015, Optim. Lett..

[23]  A. Göpfert Variational methods in partially ordered spaces , 2003 .

[24]  Jane J. Ye,et al.  The exact penalty principle , 2012 .

[25]  Nicolae Popovici Structure of efficient sets in lexicographic quasiconvex multicriteria optimization , 2006, Oper. Res. Lett..

[26]  Alberto Zaffaroni,et al.  Degrees of Efficiency and Degrees of Minimality , 2003, SIAM J. Control. Optim..

[27]  S. M. Robinson,et al.  A quadratically-convergent algorithm for general nonlinear programming problems , 1972, Math. Program..

[28]  Nicolae Popovici Involving the Helly number in Pareto reducibility , 2008, Oper. Res. Lett..

[29]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[30]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .