Exploiting online music tags for music emotion classification

The online repository of music tags provides a rich source of semantic descriptions useful for training emotion-based music classifier. However, the imbalance of the online tags affects the performance of emotion classification. In this paper, we present a novel data-sampling method that eliminates the imbalance but still takes the prior probability of each emotion class into account. In addition, a two-layer emotion classification structure is proposed to harness the genre information available in the online repository of music tags. We show that genre-based grouping as a precursor greatly improves the performance of emotion classification. On the average, the incorporation of online genre tags improves the performance of emotion classification by a factor of 55% over the conventional single-layer system. The performance of our algorithm for classifying 183 emotion classes reaches 0.36 in example-based f-score.

[1]  Gert R. G. Lanckriet,et al.  A Game-Based Approach for Collecting Semantic Annotations of Music , 2007, ISMIR.

[2]  Rosalind W. Picard Affective computing: (526112012-054) , 1997 .

[3]  N. Scaringella,et al.  Automatic genre classification of music content: a survey , 2006, IEEE Signal Process. Mag..

[4]  Jiangchuan Liu,et al.  Statistics and Social Network of YouTube Videos , 2008, 2008 16th Interntional Workshop on Quality of Service.

[5]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[6]  George Tzanetakis,et al.  MARSYAS: a framework for audio analysis , 1999, Organised Sound.

[7]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[8]  Yueting Zhuang,et al.  Popular music retrieval by detecting mood , 2003, SIGIR.

[9]  Daniel P. W. Ellis,et al.  Multiple-Instance Learning for Music Information Retrieval , 2008, ISMIR.

[10]  Björn Schuller,et al.  ‘Mister D.J., Cheer Me Up!’: Musical and Textual Features for Automatic Mood Classification , 2010 .

[11]  Jens Grivolla,et al.  Multimodal Music Mood Classification Using Audio and Lyrics , 2008, 2008 Seventh International Conference on Machine Learning and Applications.

[12]  Tao Li,et al.  Detecting emotion in music , 2003, ISMIR.

[13]  Daniel P. W. Ellis,et al.  Identifying `Cover Songs' with Chroma Features and Dynamic Programming Beat Tracking , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[14]  Daniel P. W. Ellis,et al.  Please Scroll down for Article Journal of New Music Research a Web-based Game for Collecting Music Metadata a Web-based Game for Collecting Music Metadata , 2022 .

[15]  Piotr Synak,et al.  Multi-Label Classification of Emotions in Music , 2006, Intelligent Information Systems.

[16]  Yi-Hsuan Yang,et al.  A Regression Approach to Music Emotion Recognition , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[17]  P. Laukka,et al.  Expression, Perception, and Induction of Musical Emotions: A Review and a Questionnaire Study of Everyday Listening , 2004 .

[18]  L. F. Barrett,et al.  Handbook of Emotions , 1993 .

[19]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[20]  W. Dowling Emotion and Meaning in Music , 2008 .

[21]  Masataka Goto,et al.  Introduction to the Special Issue on Music Information Retrieval , 2008 .

[22]  Paul Lamere,et al.  Social Tagging and Music Information Retrieval , 2008 .

[23]  Juan Pablo Bello,et al.  A Robust Mid-Level Representation for Harmonic Content in Music Signals , 2005, ISMIR.

[24]  Newton Lee,et al.  ACM Transactions on Multimedia Computing, Communications and Applications (ACM TOMCCAP) , 2007, CIE.

[25]  Juan Pablo Bello,et al.  Automated Music Emotion Recognition: A Systematic Evaluation , 2010 .

[26]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[27]  Yi-Hsuan Yang,et al.  Improving Musical Concept Detection by Ordinal Regression and Context Fusion , 2009, ISMIR.

[28]  S. Gosling,et al.  PERSONALITY PROCESSES AND INDIVIDUAL DIFFERENCES The Do Re Mi’s of Everyday Life: The Structure and Personality Correlates of Music Preferences , 2003 .

[29]  David G. Stork,et al.  Pattern Classification , 1973 .

[30]  Rosalind W. Picard Affective Computing , 1997 .

[31]  Homer H. Chen,et al.  Music Emotion Recognition , 2011 .

[32]  Lie Lu,et al.  Automatic mood detection and tracking of music audio signals , 2006, IEEE Transactions on Audio, Speech, and Language Processing.

[33]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[34]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[35]  David Huron Perceptual and Cognitive Applications in Music Information Retrieval , 2000, ISMIR.

[36]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[37]  Yi-Hsuan Yang,et al.  Music emotion classification: a fuzzy approach , 2006, MM '06.

[38]  William F. Hanks,et al.  discourse genres in a theory of practice , 1987 .

[39]  Jonghwa Kim,et al.  Music Emotion and Genre Recognition Toward New Affective Music Taxonomy , 2010 .

[40]  Zhi-Hua Zhou,et al.  Exploratory Under-Sampling for Class-Imbalance Learning , 2006, Sixth International Conference on Data Mining (ICDM'06).

[41]  Chirag Shah Tubekit: a query-based youtube crawling toolkit , 2008, JCDL '08.

[42]  Jeffrey J. Scott,et al.  MUSIC EMOTION RECOGNITION: A STATE OF THE ART REVIEW , 2010 .

[43]  Roberto Basili,et al.  Learning to Classify Text Using Support Vector Machines: Methods, Theory, and Algorithms by Thorsten Joachims , 2003, Comput. Linguistics.

[44]  Robert C. Holte,et al.  C4.5, Class Imbalance, and Cost Sensitivity: Why Under-Sampling beats Over-Sampling , 2003 .

[45]  Zhi-Hua Zhou,et al.  Exploratory Under-Sampling for Class-Imbalance Learning , 2006, ICDM.

[46]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[47]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[48]  J. Stephen Downie,et al.  Survey Of Music Information Needs, Uses, And Seeking Behaviours: Preliminary Findings , 2004, ISMIR.

[49]  J. Stephen Downie,et al.  Improving mood classification in music digital libraries by combining lyrics and audio , 2010, JCDL '10.

[50]  Lie Lu,et al.  Collective Annotation of Music from Multiple Semantic Categories , 2008, ISMIR.

[51]  Leonard B. Meyer Emotion and Meaning in Music , 1957 .

[52]  Thierry Bertin-Mahieux,et al.  Autotagger: A Model for Predicting Social Tags from Acoustic Features on Large Music Databases , 2008 .

[53]  H ChenHomer,et al.  Exploiting online music tags for music emotion classification , 2011 .

[54]  J. Stephen Downie,et al.  Exploring Mood Metadata: Relationships with Genre, Artist and Usage Metadata , 2007, ISMIR.

[55]  David Jason Beard,et al.  Musicology: The Key Concepts , 2005 .

[56]  Mert Bay,et al.  The 2007 MIREX Audio Mood Classification Task: Lessons Learned , 2008, ISMIR.

[57]  Yi-Hsuan Yang,et al.  Ranking-Based Emotion Recognition for Music Organization and Retrieval , 2011, IEEE Transactions on Audio, Speech, and Language Processing.