Single-cell eQTLGen Consortium: a personalized understanding of disease.

In recent years, functional genomics approaches combining genetic information with bulk RNA-sequencing data have identified the downstream expression effects of disease-associated genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and in dynamic processes, many of which are obscured when using bulk methods. The enormous increase in throughput and reduction in cost per cell now allow this technology to be applied to large-scale population genetics studies. Therefore, we have founded the single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing disease-causing genetic variants and identifying the cellular contexts in which they affect gene expression. Ultimately, this information can enable development of personalized medicine. Here, we outline the goals, approach, potential utility and early proofs-of-concept of the sc-eQTLGen consortium. We also provide a set of study design considerations for future single-cell eQTL studies.

[1]  E. H. Simpson,et al.  The Interpretation of Interaction in Contingency Tables , 1951 .

[2]  Hugues Bersini,et al.  Separation of samples into their constituents using gene expression data , 2001, ISMB.

[3]  E. Topol,et al.  Pharmacogenomics in cardiovascular diseases. , 2003, Progress in cardiovascular diseases.

[4]  S. Hunt,et al.  Genome-Wide Associations of Gene Expression Variation in Humans , 2005, PLoS genetics.

[5]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[6]  D. Tranchina,et al.  Stochastic mRNA Synthesis in Mammalian Cells , 2006, PLoS biology.

[7]  D. Koller,et al.  Population genomics of human gene expression , 2007, Nature Genetics.

[8]  C. Wijmenga,et al.  Complex nature of SNP genotype effects on gene expression in primary human leucocytes , 2009, BMC Medical Genomics.

[9]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[10]  Ie-Bin Lian,et al.  Modeling expression quantitative trait loci in data combining ethnic populations , 2010, BMC Bioinformatics.

[11]  A. Beyer,et al.  Detection and interpretation of expression quantitative trait loci (eQTL). , 2009, Methods.

[12]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[13]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[14]  Gabor T. Marth,et al.  Demographic history and rare allele sharing among human populations , 2011, Proceedings of the National Academy of Sciences.

[15]  F. Vannberg,et al.  GENETICS OF GENE EXPRESSION IN PRIMARY IMMUNE CELLS IDENTIFIES CELL-SPECIFIC MASTER REGULATORS AND ROLES OF HLA ALLELES , 2012, Nature Genetics.

[16]  M. Stephens,et al.  Genome-wide Efficient Mixed Model Analysis for Association Studies , 2012, Nature Genetics.

[17]  M. Oosting,et al.  Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[18]  R. Ophoff,et al.  Unraveling the Regulatory Mechanisms Underlying Tissue-Dependent Genetic Variation of Gene Expression , 2012, PLoS genetics.

[19]  Christopher D. Brown,et al.  Integrative Modeling of eQTLs and Cis-Regulatory Elements Suggests Mechanisms Underlying Cell Type Specificity of eQTLs , 2012, PLoS genetics.

[20]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[21]  Aleksandra A. Kolodziejczyk,et al.  Accounting for technical noise in single-cell RNA-seq experiments , 2013, Nature Methods.

[22]  C. Carlson,et al.  Generalization and Dilution of Association Results from European GWAS in Populations of Non-European Ancestry: The PAGE Study , 2013, PLoS biology.

[23]  M. Peters,et al.  Cell specific eQTL analysis without sorting cells , 2014, bioRxiv.

[24]  D. Koller,et al.  Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals , 2013, Genome research.

[25]  Melissa J. Davis,et al.  Predicting expression: the complementary power of histone modification and transcription factor binding data , 2014, Epigenetics & Chromatin.

[26]  Claudia Angelini,et al.  Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems , 2014, Front. Cell Dev. Biol..

[27]  Junwen Wang,et al.  Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. , 2014, Methods.

[28]  Chun Jimmie Ye,et al.  Intersection of population variation and autoimmunity genetics in human T cell activation , 2014, Science.

[29]  Martin Vingron,et al.  Reconstruction of gene networks using prior knowledge , 2015, BMC Systems Biology.

[30]  N. Schork Personalized medicine: Time for one-person trials , 2015, Nature.

[31]  A. Zhernakova,et al.  Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics , 2015, BMJ Open.

[32]  Fabian J Theis,et al.  Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements , 2015, Nature Biotechnology.

[33]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[34]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[35]  Fabian J. Theis,et al.  Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data , 2015, Bioinform..

[36]  Rudiyanto Gunawan,et al.  Optimal design of gene knockout experiments for gene regulatory network inference , 2015, Bioinform..

[37]  W. J. Niessen,et al.  HASE: Framework for efficient high-dimensional association analyses , 2016, Scientific Reports.

[38]  Matthew T. Maurano,et al.  Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells , 2016, Cell.

[39]  Dongdong Lin,et al.  An integrative imputation method based on multi-omics datasets , 2016, BMC Bioinformatics.

[40]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[41]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[42]  A. Hofman,et al.  Identification of context-dependent expression quantitative trait loci in whole blood , 2016, Nature Genetics.

[43]  Y. Kamatani,et al.  Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis , 2017, Nature Genetics.

[44]  Abhijeet R. Sonawane,et al.  Exploring regulation in tissues with eQTL networks , 2017, Proceedings of the National Academy of Sciences.

[45]  Christopher R. Gignoux,et al.  Human demographic history impacts genetic risk prediction across diverse populations , 2016, bioRxiv.

[46]  Pierre Geurts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017 .

[47]  O. Stegle,et al.  DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning , 2016, Genome Biology.

[48]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[49]  Luke R. Lloyd-Jones,et al.  Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood , 2017, Nature Communications.

[50]  Mark Craven,et al.  A review of active learning approaches to experimental design for uncovering biological networks , 2017, PLoS Comput. Biol..

[51]  Luke R. Lloyd-Jones,et al.  The Genetic Architecture of Gene Expression in Peripheral Blood. , 2017, American journal of human genetics.

[52]  N. Hacohen,et al.  Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.

[53]  David A. Knowles,et al.  Allele-specific expression reveals interactions between genetic variation and environment , 2015, Nature Methods.

[54]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[55]  Alireza F. Siahpirani,et al.  A prior-based integrative framework for functional transcriptional regulatory network inference , 2016, Nucleic acids research.

[56]  M. G. van der Wijst,et al.  Single-cell RNA sequencing identifies cell type-specific cis-eQTLs and co-expression QTLs , 2018, Nature Genetics.

[57]  Yakir A Reshef,et al.  Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits , 2018, Nature Genetics.

[58]  Lude Franke,et al.  An integrative approach for building personalized gene regulatory networks for precision medicine , 2018, Genome Medicine.

[59]  Fabien C. Lamaze,et al.  Gene-by-environment interactions in urban populations modulate risk phenotypes , 2018, Nature Communications.

[60]  Aviezer Lifshitz,et al.  MetaCell: analysis of single cell RNA-seq data using k-NN graph partitions , 2018, bioRxiv.

[61]  Luke R. Lloyd-Jones,et al.  Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes , 2018, Nature Communications.

[62]  Xuegong Zhang,et al.  SCeQTL: an R package for identifying eQTL from single-cell parallel sequencing data , 2018, bioRxiv.

[63]  Hanlee P. Ji,et al.  scPred: Cell type prediction at single-cell resolution , 2018, bioRxiv.

[64]  Prashant S. Emani,et al.  Comprehensive functional genomic resource and integrative model for the human brain , 2018, Science.

[65]  Yang I Li,et al.  Discovery and characterization of variance QTLs in human induced pluripotent stem cells , 2018, bioRxiv.

[66]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[67]  Tallulah S Andrews,et al.  False signals induced by single-cell imputation , 2018, F1000Research.

[68]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[69]  Thomas M. Keane,et al.  The European Nucleotide Archive in 2017 , 2017, Nucleic Acids Res..

[70]  Andrew C. Adey,et al.  Joint profiling of chromatin accessibility and gene expression in thousands of single cells , 2018, Science.

[71]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[72]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[73]  Jessica C. Mar,et al.  Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data , 2018, BMC Bioinformatics.

[74]  Giovanni Iacono,et al.  Single-Cell Transcriptomics Unveils Gene Regulatory Network Plasticity , 2018 .

[75]  S. Aerts,et al.  Mapping gene regulatory networks from single-cell omics data , 2018, Briefings in functional genomics.

[76]  Sreeram Kannan,et al.  Towards inferring causal gene regulatory networks from single cell expression Measurements , 2018 .

[77]  Ambrose J. Carr,et al.  Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment , 2018, Cell.

[78]  I. Nikaido,et al.  Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs , 2018, Nature Communications.

[79]  Davis J. McCarthy,et al.  Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression , 2019, bioRxiv.

[80]  Chun Jimmie Ye,et al.  Mapping gene regulatory networks of primary CD4+ T cells using single-cell genomics and genome engineering , 2019, bioRxiv.

[81]  Stephanie A. Bien,et al.  Genetic analyses of diverse populations improves discovery for complex traits , 2019, Nature.

[82]  T. M. Murali,et al.  Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data , 2019, Nature Methods.

[83]  Daniel J. Gaffney,et al.  souporcell: Robust clustering of single cell RNAseq by genotype and ambient RNA inference without reference genotypes , 2019, bioRxiv.

[84]  L. Foster,et al.  Evaluating measures of association for single-cell transcriptomics , 2019, Nature Methods.

[85]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[86]  Igor Mandric,et al.  Optimized design of single-cell RNA sequencing experiments for cell-type-specific eQTL analysis , 2019, Nature Communications.

[87]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[88]  Luyi Tian,et al.  Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments , 2019, Nature Methods.

[89]  Jay W. Shin,et al.  C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution , 2018, Nature Communications.

[90]  Biao Zeng,et al.  PolyQTL: Bayesian multiple eQTL detection with control for population structure and sample relatedness , 2019, Bioinform..

[91]  Scott M. Williams,et al.  The Missing Diversity in Human Genetic Studies , 2019, Cell.

[92]  L. Coin,et al.  Genotype-free demultiplexing of pooled single-cell RNA-seq , 2019, Genome Biology.

[93]  Dayanne M. Castro,et al.  Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells. , 2019, Genome research.

[94]  Jacob M. Schreiber,et al.  A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens , 2019, Cell.

[95]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[96]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome Biology.

[97]  Marcel J. T. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[98]  Fabian J Theis,et al.  A cellular census of human lungs identifies novel cell states in health and in asthma , 2019, Nature Medicine.

[99]  K. Frazer,et al.  Cellular deconvolution of GTEx tissues powers eQTL studies to discover thousands of novel disease and cell-type associated regulatory variants , 2019, bioRxiv.

[100]  S. Richardson,et al.  Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data , 2019, Cell Systems.

[101]  Martin J. Aryee,et al.  Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility , 2019, Nature Biotechnology.

[102]  Fabian J. Theis,et al.  Deep learning does not outperform classical machine learning for cell-type annotation , 2019, bioRxiv.

[103]  Dayanne M. Castro,et al.  Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments , 2020, eLife.