A hyperelastic‐based large strain elasto‐plastic constitutive formulation with combined isotropic‐kinematic hardening using the logarithmic stress and strain measures

SUMMARY This paper addresses the formulation of a set of constitutive equations for finite deformation metal plasticity. The combined isotropic-kinematic hardening model of the infinitesimal theory of plasticity is extended to the large strain range on the basis of three main assumptions: (i) the formulation is hyperelastic based, (ii) the stress-strain law preserves the elastic constants of the infinitesimal theory but is written in terms of the Hencky strain tensor and its elastic work conjugate stress tensor, and (iii) the multiplicative decomposition of the deformation gradient is adopted. Since no stress rates are present, the formulation is, of course, numerically objective in the time integration. It is shown that the model gives adequate physical behaviour, and comparison is made with an equivalent constitutive model based on the additive decomposition of the strain tensor.

[1]  J. Nagtegaal,et al.  Some computational aspects of elastic-plastic large strain analysis , 1981 .

[2]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .

[3]  Jacob Lubliner,et al.  A maximum-dissipation principle in generalized plasticity , 1984 .

[4]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[5]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[6]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[7]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[8]  Bernard D. Coleman,et al.  Thermodynamics and departures from Fourier's law of heat conduction , 1963 .

[9]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .

[10]  Edward L. Wilson,et al.  NONSAP — A nonlinear structural analysis program☆ , 1974 .

[11]  S. Nemat-Nasser On finite deformation elasto-plasticity , 1982 .

[12]  Eduardo N. Dvorkin,et al.  ON THE SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS. , 1984 .

[13]  R. F. Kulak,et al.  Accurate Numerical Solutions for Elastic-Plastic Models , 1979 .

[14]  J. Mandel,et al.  Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques , 1973 .

[15]  G. Strang,et al.  The solution of nonlinear finite element equations , 1979 .

[16]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[17]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[18]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[19]  R. Asaro,et al.  Micromechanics of Crystals and Polycrystals , 1983 .

[20]  Rodney Hill,et al.  Aspects of Invariance in Solid Mechanics , 1979 .

[21]  Milos Kojic,et al.  The ‘effective‐stress‐function’ algorithm for thermo‐elasto‐plasticity and creep , 1987 .

[22]  Milos Kojic,et al.  Thermo-elastic-plastic and creep analysis of shell structures , 1987 .

[23]  J. Nagtegaal On the implementation of inelastic constitutive equations with special reference to large deformation problems , 1982 .

[24]  J. Mandel Thermodynamics and Plasticity , 1973 .

[25]  En-Jui Lee Elastic-Plastic Deformation at Finite Strains , 1969 .

[26]  S. Atluri,et al.  Constitutive modeling and computational implementation for finite strain plasticity , 1985 .

[27]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[28]  Milos Kojic,et al.  Studies of finite element procedures—Stress solution of a closed elastic strain path with stretching and shearing using the updated Lagrangian Jaumann formulation , 1987 .

[29]  K. Bathe,et al.  A note on the use of the additive decomposition of the strain tensor in finite deformation inelasticity , 1991 .

[30]  Satya N. Atluri,et al.  Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses , 1983 .

[31]  R. Hill The mathematical theory of plasticity , 1950 .

[32]  P. M. Naghdi,et al.  A general theory of an elastic-plastic continuum , 1965 .

[33]  R. D. Krieg,et al.  Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model , 1977 .

[34]  Jacob Lubliner,et al.  Normality rules in large-deformation plasticity , 1986 .