L'intégration d'instruments informatiques dans l'enseignement: Une approche par les techniques

The use of graphical and symbolic facilities in the teaching and learning of algebra and calculus will soon be a reality. Authors who write about the introduction of these instruments often claim that new technology is able to redress the imbalance between skill-dominated conceptions of school mathematics in favour of understanding. More recently some have stressed that `experimental mathematics' traditionally the reserve of mathematical research may be incorporated into the teaching and learning of mathematics. This paper looks into these two ideas and shows that they conceal an essential dimension: techniques play an important role in mathematical activity, intermediate between tasks and theories. This paper draws on research studies on the introduction of symbolic systems on computers and calculators and considers `new' techniques that accompany new technological instruments, their role in conceptualising and their links with `usual' paper/pencil techniques, as a key to analyse the role of technology in education. This view implies non obvious tasks for the teacher in the introduction of technology: the design of praxeologies adapted to new instrumental settings and everyday action on students' techniques.

[1]  James T. Fey,et al.  Technology and mathematics education: A survey of recent developments and important problems , 1989 .

[2]  Josep Gascón Evolución de la didactica de las matemáticas como disciplina científica , 1998 .

[3]  Jonathan M. Borwein,et al.  Making Sense of Experimental Mathematics , 1996 .

[4]  Jean-Baptiste Lagrange,et al.  Techniques and Concepts in Pre-calculus Using CAS: A Two Year Classroom Experiment with the TI-92. , 1999 .

[5]  J. Lagrange Approches didactique et cognitive d'un instrument technologique dans l'enseignement. Le cas du calcul formel en lycée. , 2000 .

[6]  Luc Trouche,et al.  The Complex Process of Converting Tools into Mathematical Instruments: The Case of Calculators , 1998, Int. J. Comput. Math. Learn..

[7]  David Tall,et al.  Functions and Calculus , 1996 .

[8]  Michèle Artigue,et al.  Le Logiciel ‘Derive’ comme revelateur de phenomenes didactiques lies a l'utilisation d'environnements informatiques pour l'apprentissage , 1997 .

[9]  Edith Schneider Teacher Experiences with the Use of a CAS in a Mathematics Classroom. , 2000 .

[10]  M. Kathleen Heid,et al.  Resequencing Skills and Concepts in Applied Calculus Using the Computer as a Tool. , 1988 .

[11]  Luc Trouche,et al.  La parabole du gaucher et de la casserole à bec verseur: ètude des processus d'apprentissage dans un environnement de calculatrices symboliques , 2000 .

[12]  Y. Chevallard L'analyse des pratiques enseignantes en théorie anthropologique du didactique , 1999 .

[13]  Jean-Baptiste Lagrange,et al.  Complex calculators in the classroom: theoretical and practical reflections on teaching pre-calculus , 1999, Int. J. Comput. Math. Learn..

[14]  R. Duval,et al.  Quel cognitif retenir en didactique des mathématiques , 1996 .