Application of Genetic Algorithm (GA) Trained Artificial Neural Network to Identify Tomatoes with Physiological Diseases

We synthetically applied computer vision, genetic algorithm and artificial neural network technology to automatically identify the tomatoes that had physiological diseases. Firstly, the tomatoes’ images were captured through a computer vision system. Then to identify cavernous tomatoes, we analyzed the roundness and detected deformed tomatoes by applying the variation of fruit’s diameter. Secondly, we used a Genetic Algorithm (GA) trained artificial neural network. Experiments show that the above methods can accurately identify tomatoes’ shapes and meet requests of classification; the accuracy rate for the identification for tomatoes with physiological diseases was up to 100%. tomato with physiological disease; computer vision; artificial neural network; genetic algorithms