Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor

[1]  Jingshan Luo,et al.  Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion , 2012, Scientific Reports.

[2]  C. F. Ng,et al.  TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties , 2012 .

[3]  Jonathan E. Halls,et al.  Photogalvanic cells based on lyotropic nanosystems: towards the use of liquid nanotechnology for personalised energy sources , 2012 .

[4]  W. R. Daud,et al.  Bimetallic complexes in artificial photosynthesis for hydrogen production: A review , 2012 .

[5]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[6]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[7]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[8]  Weiwei Zhou,et al.  Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor , 2011 .

[9]  J. Yang,et al.  Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application , 2011 .

[10]  Jian-qing Zhang,et al.  UV-Induced Oxidative Energy Storage Behavior of a Novel Nanostructured TiO2 Ni(OH)2 Bilayer System , 2011 .

[11]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[12]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[13]  Stafford W. Sheehan,et al.  Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review , 2011 .

[14]  T. Tatsuma,et al.  Visible light driven photocatalysts with oxidative energy storage abilities , 2011 .

[15]  Lei Xu,et al.  Oxidative energy storage behavior of a porous nanostructured TiO2–Ni(OH)2 bilayer photocatalysis system , 2011 .

[16]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[17]  H. Dai,et al.  Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. , 2010, Journal of the American Chemical Society.

[18]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[19]  X. Tao,et al.  Light energy storage and photoelectrochemical behavior of the titanate nanotube array/Ni(OH)2 electrode , 2009 .

[20]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[21]  T. Tatsuma,et al.  Visible light-induced photocatalysts with reductive energy storage abilities , 2008 .

[22]  M. Hirscher,et al.  Metal hydride materials for solid hydrogen storage: a review , 2007 .

[23]  T. Tatsuma,et al.  Remote energy storage in Ni(OH)2 with TiO2 photocatalyst. , 2006, Physical chemistry chemical physics : PCCP.

[24]  T. Tatsuma,et al.  Oxidative energy storage ability of a TiO2-Ni(OH)2 bilayer photocatalyst. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[25]  A. Fujishima,et al.  Bactericidal effect of an energy storage TiO2–WO3 photocatalyst in dark , 2003 .

[26]  A. Fujishima,et al.  TiO2−WO3 Photoelectrochemical Anticorrosion System with an Energy Storage Ability , 2001 .

[27]  J. Dalenbäck,et al.  A REVIEW OF LARGE-SCALE SOLAR HEATING SYSTEMS IN EUROPE , 1998 .

[28]  R. Kostecki,et al.  Photochemical and photoelectrochemical behavior of a novel TiO2/Ni(OH)2 electrode , 1998 .

[29]  F. B. Wald,et al.  EFG crystal growth technology for low cost terrestrial photovoltaics: review and outlook , 1991 .

[30]  J. Tu,et al.  Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material , 2011 .

[31]  H. Mourão,et al.  Nanoestruturas em fotocatálise: uma revisão sobre estratégias de síntese de fotocatalisadores em escala nanométrica. , 2009 .

[32]  Stuart Licht,et al.  Encyclopedia of Electrochemistry, Vol. 6: Semiconductor electrodes and Photoelectrochemistry , 2002 .

[33]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[34]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .