Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses

Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. These wrinkles are frequent because of the possible relative motion of fibres making up the reinforcement, leading to a very weak textile bending stiffness. It is necessary to simulate their onset but also their growth and their shape in order to verify that they do not extend to the useful part of the preform. In this paper the simulation of textile composite reinforcement forming and wrinkling is based on a simplified form of virtual internal work defined according to tensions, in-plane shear and bending moments on a unit woven cell. The role of the three rigidities (tensile, in-plane shear and bending) in wrinkling simulations is analysed. If in-plane shear stiffness plays a main role for onset of wrinkles in double-curved shape forming, there is no direct relation between shear angle and wrinkling. Wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and it is not possible to perform a wrinkle simulation using a membrane approach.

[1]  Julie Chen,et al.  Experimental and numerical analysis on normalization of picture frame tests for composite materials , 2004 .

[2]  Remko Akkerman,et al.  Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials , 2008 .

[3]  D. Soulat,et al.  Experimental Study of Bending Behaviour of Reinforcements , 2010 .

[4]  Anh Vu Duong,et al.  Etude expérimentale du comportement mécanique de renforts composites tissés lors de la mise en forme sur géométries non développables , 2008 .

[5]  I. Verpoest,et al.  Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements , 2006 .

[6]  S. Allaoui,et al.  Experimental device for the preforming step of the RTM process , 2009 .

[7]  Mpf Sutcliffe,et al.  A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites , 2007 .

[8]  Suresh G. Advani,et al.  Flow and rheology in polymer composites manufacturing , 1994 .

[9]  Carlo Poggi,et al.  Mechanical modelling of monofilament technical textiles , 2008 .

[10]  A. K. Pickett,et al.  Review of Finite Element Simulation Methods Applied to Manufacturing and Failure Prediction in Composites Structures , 2002 .

[11]  Jean Louis Billoet,et al.  Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics , 2001 .

[12]  Gilbert Lebrun,et al.  Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics , 2003 .

[13]  Ignace Verpoest,et al.  Optical strain fields in shear and tensile testing of textile reinforcements , 2008 .

[14]  Yiu-Wing Mai,et al.  Intra-ply shear locking in finite element analyses of woven fabric forming processes , 2006 .

[15]  Jian Cao,et al.  Wrinkling behavior of rectangular plates under lateral constraint , 1997 .

[16]  Andrew C. Long,et al.  Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation , 2005 .

[17]  P. Boisse,et al.  Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements , 2001 .

[18]  M. P. F. Sutcliffea,et al.  Characterisation of material properties for draping of dry woven composite material , 2003 .

[19]  Andrew C. Long,et al.  Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments , 2004 .

[20]  Tae Jin Kang,et al.  The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch , 2007 .

[21]  G. R. Heppler,et al.  Mechanical Modeling of Fabrics in Bending , 2004 .

[22]  Constantina Lekakou,et al.  Processing of Composites: Simulations of the Draping of Fabrics with Updated Material Behaviour Law , 2001 .

[23]  J. Teng,et al.  Theoretical Modeling of Large Shear Deformation and Wrinkling of Plain Woven Composite , 2009 .

[24]  Julie Chen,et al.  On the relationship between shear angle and wrinkling of textile composite preforms , 1997 .

[25]  Eugenio Oñate,et al.  Rotation-free triangular plate and shell elements , 2000 .

[26]  Taylan Altan,et al.  Wrinkling criterion for an anisotropic shell with compound curvatures in sheet forming , 1994 .

[27]  L. Mahadevan,et al.  Geometry and physics of wrinkling. , 2003, Physical review letters.

[28]  P. Boisse,et al.  3 – Finite element analysis of composite forming , 2007 .

[29]  Philippe Boisse,et al.  Forming of a Very Unbalanced Fabric Experiment and Simulation , 2003 .

[30]  Philippe Boisse,et al.  A semi‐discrete shell finite element for textile composite reinforcement forming simulation , 2009 .

[31]  Noboru Kikuchi,et al.  Numerical analysis and optimal design of composite thermoforming process , 1999 .

[32]  S. Kawabata,et al.  3—THE FINITE-DEFORMATION THEORY OF PLAIN-WEAVE FABRICS PART I: THE BIAXIAL-DEFORMATION THEORY , 1973 .

[33]  James A. Sherwood,et al.  Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results , 2008 .

[34]  Jian Cao,et al.  Composite Forming Technologies , 2007 .

[35]  Ignace Verpoest,et al.  Picture Frame Test of Woven Composite Reinforcements with a Full-Field Strain Registration , 2006 .

[36]  R. Hill A general theory of uniqueness and stability in elastic-plastic solids , 1958 .

[37]  Cwj Cees Oomens,et al.  The Wrinkling of Thin Membranes: Part I—Theory , 1987 .

[38]  Jian Cao,et al.  A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics , 2005 .

[39]  Prasad Potluri,et al.  Comprehensive drape modelling for moulding 3D textile preforms , 2001 .

[40]  Andrew C. Long,et al.  Predictive modelling for optimization of textile composite forming , 2007 .

[41]  Long Chen FINITE ELEMENT METHOD , 2013 .

[42]  Gilles Hivet,et al.  Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements , 2008 .

[43]  F. T. Peirce The geometry of cloth structure , 1937 .

[44]  J. Månson,et al.  Drapability of dry textile fabrics for stampable thermoplastic preforms , 2000 .

[45]  Jun Wang,et al.  The draping of woven fabric preforms and prepregs for production of polymer composite components , 1999 .

[46]  J. Huetink,et al.  Large deformation simulation of anisotropic material using an updated Lagrangian finite element method , 2007 .

[47]  Ignace Verpoest,et al.  Full-field strain measurements in textile deformability studies , 2008 .

[48]  川端 季雄,et al.  The standardization and analysis of hand evaluation. , 1975 .

[49]  Michel Brunet,et al.  Detailed formulation of the rotation‐free triangular element “S3” for general purpose shell analysis , 2006 .

[50]  P. Potluri,et al.  Measurement of meso-scale shear deformations for modelling textile composites , 2006 .

[51]  Kevin D Potter,et al.  Bias extension measurements on cross-plied unidirectional prepreg , 2002 .

[52]  Anthony K. Pickett,et al.  Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX , 1998 .

[53]  F. Rammerstorfer,et al.  Buckling of stretched strips , 2000 .

[54]  A. Long,et al.  A Simulation of Reinforcement Deformation during the Production of Preforms for Liquid Moulding Processes , 1994 .