Framework and Benchmarks for Combinatorial and Mixed-variable Bayesian Optimization

This paper introduces a modular framework for Mixed-variable and Combinatorial Bayesian Optimization (MCBO) to address the lack of systematic benchmarking and standardized evaluation in the field. Current MCBO papers often introduce non-diverse or non-standard benchmarks to evaluate their methods, impeding the proper assessment of different MCBO primitives and their combinations. Additionally, papers introducing a solution for a single MCBO primitive often omit benchmarking against baselines that utilize the same methods for the remaining primitives. This omission is primarily due to the significant implementation overhead involved, resulting in a lack of controlled assessments and an inability to showcase the merits of a contribution effectively. To overcome these challenges, our proposed framework enables an effortless combination of Bayesian Optimization components, and provides a diverse set of synthetic and real-world benchmarking tasks. Leveraging this flexibility, we implement 47 novel MCBO algorithms and benchmark them against seven existing MCBO solvers and five standard black-box optimization algorithms on ten tasks, conducting over 4000 experiments. Our findings reveal a superior combination of MCBO primitives outperforming existing approaches and illustrate the significance of model fit and the use of a trust region. We make our MCBO library available under the MIT license at \url{https://github.com/huawei-noah/HEBO/tree/master/MCBO}.

[1]  Janardhan Rao Doppa,et al.  Bayesian Optimization over High-Dimensional Combinatorial Spaces via Dictionary-based Embeddings , 2023, AISTATS.

[2]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[3]  Michael A. Osborne,et al.  Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization , 2022, NeurIPS.

[4]  Philippe A. Robert,et al.  AntBO: Towards Real-World Automated Antibody Design with Combinatorial Bayesian Optimisation , 2022, SSRN Electronic Journal.

[5]  Antoine Grosnit,et al.  BOiLS: Bayesian Optimisation for Logic Synthesis , 2021, 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[6]  Mark Pullin,et al.  Emulation of physical processes with Emukit , 2021, ArXiv.

[7]  Ingrid Hobæk Haff,et al.  One billion synthetic 3D-antibody-antigen complexes enable unconstrained machine-learning formalized investigation of antibody specificity prediction , 2021 .

[8]  Nono S. C. Merleau,et al.  A simple evolutionary algorithm guided by local mutations for an efficient RNA design , 2021, GECCO.

[9]  Michael A. Osborne,et al.  Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces , 2021, ICML.

[10]  Haitham Bou-Ammar,et al.  Are we Forgetting about Compositional Optimisers in Bayesian Optimisation? , 2020, J. Mach. Learn. Res..

[11]  Paul Rayson,et al.  BOSS: Bayesian Optimization over String Spaces , 2020, NeurIPS.

[12]  Yi Li,et al.  Gaussian Process Regression With Automatic Relevance Determination Kernel for Calendar Aging Prediction of Lithium-Ion Batteries , 2020, IEEE Transactions on Industrial Informatics.

[13]  Clinton Fookes,et al.  Bayesian Neural Networks: An Introduction and Survey , 2020, Case Studies in Applied Bayesian Data Science.

[14]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[15]  Matthias Poloczek,et al.  Scalable Global Optimization via Local Bayesian Optimization , 2019, NeurIPS.

[16]  Michael A. Osborne,et al.  Bayesian Optimisation over Multiple Continuous and Categorical Inputs , 2019, ICML.

[17]  Ahmad Makui,et al.  A portfolio selection model based on the knapsack problem under uncertainty , 2019, PloS one.

[18]  Kirthevasan Kandasamy,et al.  Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly , 2019, J. Mach. Learn. Res..

[19]  Jiye Shi,et al.  Five computational developability guidelines for therapeutic antibody profiling , 2019, Proceedings of the National Academy of Sciences.

[20]  Jakub M. Tomczak,et al.  Combinatorial Bayesian Optimization using the Graph Cartesian Product , 2019, NeurIPS.

[21]  Eric Xing,et al.  ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language , 2019 .

[22]  Andrew Gordon Wilson,et al.  GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration , 2018, NeurIPS.

[23]  Matthias Poloczek,et al.  Bayesian Optimization of Combinatorial Structures , 2018, ICML.

[24]  Yves Crama,et al.  Local Search in Combinatorial Optimization , 2018, Artificial Neural Networks.

[25]  Giovanni De Micheli,et al.  The EPFL Logic Synthesis Libraries , 2018, ArXiv.

[26]  Tom Dhaene,et al.  GPflowOpt: A Bayesian Optimization Library using TensorFlow , 2017, NIPS 2017.

[27]  Benjamin Van Roy,et al.  A Tutorial on Thompson Sampling , 2017, Found. Trends Mach. Learn..

[28]  Alexis Boukouvalas,et al.  GPflow: A Gaussian Process Library using TensorFlow , 2016, J. Mach. Learn. Res..

[29]  Peter I. Frazier,et al.  The Parallel Knowledge Gradient Method for Batch Bayesian Optimization , 2016, NIPS.

[30]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[31]  Neil D. Lawrence,et al.  Batch Bayesian Optimization via Local Penalization , 2015, AISTATS.

[32]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[33]  Giovanni De Micheli,et al.  Majority-Inverter Graph: A novel data-structure and algorithms for efficient logic optimization , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).

[34]  Wen Jiang,et al.  Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage , 2014, Nature Communications.

[35]  Yuval Tassa,et al.  MuJoCo: A physics engine for model-based control , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  L. Deng,et al.  The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.

[37]  Lia Purpura On Tools , 2012 .

[38]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[39]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[40]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[41]  P. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology : AMB.

[42]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[43]  Michael S. Goldberg,et al.  Nanoparticle-mediated delivery of siRNA targeting Parp1 extends survival of mice bearing tumors derived from Brca1-deficient ovarian cancer cells , 2010, Proceedings of the National Academy of Sciences.

[44]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[45]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[46]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[47]  David H. Mathews,et al.  NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure , 2009, Nucleic Acids Res..

[48]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Q. Pan,et al.  A novel multi-objective particle swarm optimization algorithm for no-wait flow shop scheduling problems , 2008 .

[50]  Jean-Michel Renders,et al.  Word-Sequence Kernels , 2003, J. Mach. Learn. Res..

[51]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[52]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[53]  G. Barbarosoglu,et al.  Hierarchical design of an integrated production and 2-echelon distribution system , 1999, Eur. J. Oper. Res..

[54]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[55]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[56]  Robert E. Tarjan,et al.  Network Flow Algorithms , 1989 .

[57]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[58]  J. F. Pierce,et al.  ON THE TRUCK DISPATCHING PROBLEM , 1971 .

[59]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[60]  J. Robinson On the Hamiltonian Game (A Traveling Salesman Problem) , 1949 .

[61]  G. B. Mathews On the Partition of Numbers , 1896 .

[62]  H. Ammar,et al.  An Empirical Study of Assumptions in Bayesian Optimisation , 2021 .

[63]  Daniel R. Jiang,et al.  BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization , 2020, NeurIPS.

[64]  G. Hunanyan,et al.  Portfolio Selection , 2019, Finanzwirtschaft, Banken und Bankmanagement I Finance, Banks and Bank Management.

[65]  Aaron Klein,et al.  RoBO : A Flexible and Robust Bayesian Optimization Framework in Python , 2017 .

[66]  Tanja Hueber,et al.  Gaussian Processes For Machine Learning , 2016 .

[67]  Giovanni De Micheli,et al.  The EPFL Combinational Benchmark Suite , 2015 .

[68]  Java Binding,et al.  GNU Linear Programming Kit , 2011 .

[69]  D. Ginsbourger,et al.  Kriging is well-suited to parallelize optimization , 2010 .

[70]  Amr Arisha,et al.  Simulation Optimisation Methods in Supply Chain Applications: a Review , 2009 .

[71]  Frank Hutter,et al.  Automated configuration of algorithms for solving hard computational problems , 2009 .

[72]  Roberto Solis-Oba,et al.  Local Search , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[73]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[74]  L. Breiman Random Forests , 2001, Machine Learning.

[75]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[76]  Peter Auer,et al.  The Nonstochastic Multiarmed Bandit Problem , 2002, SIAM J. Comput..

[77]  Chih-Jen Lin,et al.  Training nu-support vector regression: theory and algorithms. , 2002, Neural computation.

[78]  Samuel J. Raff,et al.  Routing and scheduling of vehicles and crews : The state of the art , 1983, Comput. Oper. Res..

[79]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .