Polarization-sensitive optical coherence tomography for estimating relative melanin content of autologous induced stem-cell derived retinal pigment epithelium

[1]  S. Takagi,et al.  Evaluation of Transplanted Autologous Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in Exudative Age-Related Macular Degeneration. , 2019, Ophthalmology. Retina.

[2]  Masahiro Yamanari,et al.  Optic axis determination in SU(2) Jones formalism , 2019, BiOS.

[3]  B. Vakoc,et al.  Quantitative depolarization measurements for fiber‐based polarization‐sensitive optical frequency domain imaging of the retinal pigment epithelium , 2018, Journal of biophotonics.

[4]  A. Elsner,et al.  Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging , 2017, Scientific Reports.

[5]  Takashi Daimon,et al.  Autologous Induced Stem‐Cell–Derived Retinal Cells for Macular Degeneration: Brief Report , 2017, The New England journal of medicine.

[6]  Masahiro Yamanari,et al.  Estimation of Jones matrix, birefringence and entropy using Cloude-Pottier decomposition in polarization-sensitive optical coherence tomography. , 2016, Biomedical optics express.

[7]  Marco Augustin,et al.  Multidisciplinary Ophthalmic Imaging Melanin Pigmentation in Rat Eyes : In Vivo Imaging by Polarization-Sensitive Optical Coherence Tomography and Comparison to Histology , 2015 .

[8]  Masahiro Yamanari,et al.  Fiber-based polarization-sensitive OCT for birefringence imaging of the anterior eye segment. , 2015, Biomedical optics express.

[9]  M. Mandai,et al.  Inhibition of T-cell activation by retinal pigment epithelial cells derived from induced pluripotent stem cells. , 2015, Investigative ophthalmology & visual science.

[10]  M. Mandai,et al.  Objective evaluation of the degree of pigmentation in human induced pluripotent stem cell-derived RPE. , 2014, Investigative ophthalmology & visual science.

[11]  Markus Ritter,et al.  RETINAL PIGMENT EPITHELIUM FINDINGS IN PATIENTS WITH ALBINISM USING WIDE-FIELD POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY , 2014, Retina.

[12]  Matthias Bolz,et al.  Detection and analysis of hard exudates by polarization-sensitive optical coherence tomography in patients with diabetic maculopathy. , 2014, Investigative ophthalmology & visual science.

[13]  Junichi Kiryu,et al.  Characterization of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Sheets Aiming for Clinical Application , 2014, Stem cell reports.

[14]  Harald Sattmann,et al.  Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization , 2012, Biomedical optics express.

[15]  Yoshiaki Yasuno,et al.  Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging. , 2012, Optics letters.

[16]  James G. Fujimoto,et al.  Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit , 2012, Optics express.

[17]  U. Schmidt-Erfurth,et al.  Polarization sensitive optical coherence tomography in the human eye , 2011, Progress in Retinal and Eye Research.

[18]  Harald Sattmann,et al.  Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. , 2010, Journal of biomedical optics.

[19]  Christian Ahlers,et al.  Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[20]  S. Cloude Polarisation: Applications in Remote Sensing , 2009 .

[21]  Michael Pircher,et al.  Measurements of depolarization distribution in the healthy human macula by polarization sensitive OCT , 2009, Journal of biophotonics.

[22]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[23]  U. Schmidt-Erfurth,et al.  Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. , 2008, Optics express.

[24]  C K Hitzenberger,et al.  Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium , 2008, British Journal of Ophthalmology.

[25]  U. Schmidt-Erfurth,et al.  Human macula investigated in vivo with polarization-sensitive optical coherence tomography. , 2006, Investigative ophthalmology & visual science.

[26]  Philip J Rosenfeld,et al.  Ranibizumab for neovascular age-related macular degeneration. , 2006, The New England journal of medicine.

[27]  F. Delori,et al.  Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. , 2006, Investigative ophthalmology & visual science.

[28]  Olaf Strauss,et al.  The retinal pigment epithelium in visual function. , 2005, Physiological reviews.

[29]  A. Fercher,et al.  Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. , 2001, Optics express.

[30]  K. Nakanishi,et al.  A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. , 1999, Investigative ophthalmology & visual science.

[31]  C K Dorey,et al.  In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. , 1995, Investigative ophthalmology & visual science.

[32]  A. Ramé [Age-related macular degeneration]. , 2006, Revue de l'infirmiere.