Ultra-fast underwater suction traps

Carnivorous aquatic Utricularia species catch small prey animals using millimetre-sized underwater suction traps, which have fascinated scientists since Darwin's early work on carnivorous plants. Suction takes place after mechanical triggering and is owing to a release of stored elastic energy in the trap body accompanied by a very fast opening and closing of a trapdoor, which otherwise closes the trap entrance watertight. The exceptional trapping speed—far above human visual perception—impeded profound investigations until now. Using high-speed video imaging and special microscopy techniques, we obtained fully time-resolved recordings of the door movement. We found that this unique trapping mechanism conducts suction in less than a millisecond and therefore ranks among the fastest plant movements known. Fluid acceleration reaches very high values, leaving little chance for prey animals to escape. We discovered that the door deformation is morphologically predetermined, and actually performs a buckling/unbuckling process, including a complete trapdoor curvature inversion. This process, which we predict using dynamical simulations and simple theoretical models, is highly reproducible: the traps are autonomously repetitive as they fire spontaneously after 5–20 h and reset actively to their ready-to-catch condition.

[1]  C. Nicholson,et al.  Darwin's bee-trap: The kinetics of Catasetum, a new world orchid , 2008, Plant signaling & behavior.

[2]  W. Barthlott,et al.  The Curious World of Carnivorous Plants , 2007 .

[3]  S. Komura,et al.  Buckling of spherical shells adhering onto a rigid substrate , 2005, The European physical journal. E, Soft matter.

[4]  L. Adamec The comparison of mechanically stimulated and spontaneous firings in traps of aquatic carnivorous Utricularia species , 2011 .

[5]  F. Lloyd IS THE DOOR OF UTRICULARIA AN IRRITABLE MECHANISM , 1932 .

[6]  Uros Krzic,et al.  Light sheet‐based fluorescence microscopy: More dimensions, more photons, and less photodamage , 2008, HFSP journal.

[7]  E. Rejmánková,et al.  Microbial community development in the traps of aquatic Utricularia species , 2009 .

[8]  I. Lichtscheidl,et al.  Utricularia: a vegetarian carnivorous plant? , 2008, Plant Ecology.

[9]  Derek J. Taylor,et al.  The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. , 2010, Journal of experimental botany.

[10]  W. Barthlott,et al.  Trap architecture in carnivorous Utricularia (Lentibulariaceae) , 2006 .

[11]  J. Borovec,et al.  Utricularia carnivory revisited: plants supply photosynthetic carbon to traps. , 2010, Journal of experimental botany.

[12]  E. Gordon,et al.  Prey composition in the carnivorous plants Utricularia inflata and U. gibba (Lentibulariaceae) from Paria Peninsula, Venezuela. , 2007, Revista de biologia tropical.

[13]  Liping Liu THEORY OF ELASTICITY , 2012 .

[14]  K. Müller,et al.  Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high substitutional rates , 2004, Plant Systematics and Evolution.

[15]  T. Sibaoka,et al.  Water extrusion in the trap bladders ofUtricularia vulgaris , 1985, The botanical magazine = Shokubutsu-gaku-zasshi.

[16]  T. Sibaoka,et al.  Water extrustion in the trap bladders ofUtricularia vulgaris , 1985, The botanical magazine = Shokubutsu-gaku-zasshi.

[17]  S. Porembski,et al.  Prey spectra of aquatic Utricularia species (Lentibulariaceae) in northeastern Germany: The role of planktonic algae , 2009 .

[18]  Philippe Marmottant,et al.  Mechanical model of the ultrafast underwater trap of Utricularia. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  P. Taylor The Genus Utricularia: A Taxonomic Monograph , 1989 .

[20]  Michael H. Dickinson,et al.  High-speed pollen release in the white mulberry tree, Morus alba L , 2006, Sexual Plant Reproduction.

[21]  C. Withycombe On the Function of the Bladders in Utricularia vulgaris L. , 1924 .

[22]  L. Mahadevan,et al.  Physical Limits and Design Principles for Plant and Fungal Movements , 2005, Science.

[23]  F. Lloyd THE MECHANISM OF THE WATER TIGHT DOOR OF THE UTRICULARIA TRAP. , 1929, Plant physiology.

[24]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[25]  D. Whitaker,et al.  Botany: A record-breaking pollen catapult , 2005, Nature.

[26]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[27]  R. J. Robins,et al.  The Carnivorous Plants , 1989 .

[28]  Ph Sydenham,et al.  The Rapid Movement of the Bladder of Utricularia Sp , 1973 .

[29]  L. Tait Insectivorous Plants , 1875, Nature.

[30]  K. Niklas DEPENDENCY OF THE TENSILE MODULUS ON TRANSVERSE DIMENSIONS, WATER POTENTIAL, AND CELL NUMBER OF PITH PARENCHYMA , 1988 .

[31]  FRANCISCO GINEZ,et al.  Carnivorous Plants , 1877, Nature.

[32]  L. Adamec,et al.  Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. , 2003, The New phytologist.

[33]  S. Timoshenko,et al.  Theory of elasticity , 1975 .