Lossless Compression of Microarray Images Using Image-Dependent Finite-Context Models

The use of microarray expression data in state-of-the-art biology has been well established. The widespread adoption of this technology, coupled with the significant volume of data generated per experiment, in the form of images, has led to significant challenges in storage and query retrieval. In this paper, we present a lossless bitplane-based method for efficient compression of microarray images. This method is based on arithmetic coding driven by image-dependent multibitplane finite-context models. It produces an embedded bitstream that allows progressive, lossy-to-lossless decoding. We compare the compression efficiency of the proposed method with three image compression standards (JPEG2000, JPEG-LS, and JBIG) and also with the two most recent specialized methods for microarray image coding. The proposed method gives better results for all images of the test sets and confirms the effectiveness of bitplane-based methods and finite-context modeling for the lossless compression of microarray images.

[1]  Rebecka Jörnsten,et al.  On the Bitplane Compression of Microarray Images , 2002 .

[2]  Kannan Ramchandran,et al.  Microarray image compression: SLOCO and the effect of information loss , 2003, Signal Processing.

[3]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[4]  Zixiang Xiong,et al.  Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[5]  R Sásik,et al.  Microarray truths and consequences. , 2004, Journal of molecular endocrinology.

[6]  Ravi Kothapalli,et al.  Microarray results: how accurate are they? , 2002, BMC Bioinformatics.

[7]  Armando J. Pinho,et al.  On the use of standards for microarray lossless image compression , 2006, IEEE Transactions on Biomedical Engineering.

[8]  D. Cavalieri,et al.  Fundamentals of cDNA microarray data analysis. , 2003, Trends in genetics : TIG.

[9]  Khalid Sayood,et al.  Introduction to data compression (2nd ed.) , 2000 .

[10]  Kannan Ramchandran,et al.  Compression of cDNA and inkjet microarray images , 2002, Proceedings. International Conference on Image Processing.

[11]  Glen G. Langdon,et al.  Universal modeling and coding , 1981, IEEE Trans. Inf. Theory.

[12]  Touradj Ebrahimi,et al.  The JPEG 2000 still image compression standard , 2001, IEEE Signal Process. Mag..

[13]  Yu Luo,et al.  Gridding and compression of microarray images , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[14]  N. Faramarzpour,et al.  Lossless DNA microarray image compression , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[15]  Donald A. Adjeroh,et al.  On denoising and compression of DNA microarray images , 2006, Pattern Recognit..

[16]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[17]  Khalid Sayood,et al.  Introduction to Data Compression , 1996 .

[18]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[19]  Donald A. Adjeroh,et al.  Lossless compression of DNA microarray images , 2005, 2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05).

[20]  S. K. Moore Making chips to probe genes , 2001 .

[21]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[22]  Armando J. Pinho,et al.  Lossless Compression of Microarray Images , 2006, 2006 International Conference on Image Processing.

[23]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[24]  Qiang Wu,et al.  FAST SEGMENTATION AND LOSSY-TO-LOSSLESS COMPRESSION OF DNA MICROARRAY IMAGES , 2002 .

[25]  Shahram Shirani,et al.  Lossless and lossy compression of DNA microarray images , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[26]  A. Ortega,et al.  Embedded image-domain adaptive compression of simple images , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[27]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..