Decompositions and bang-bang properties

In this paper, minimal time and minimal norm control problems are studied. The target sets considered are the origin of state spaces and controls are point-wisely bounded functions. The system stuided in this paper is assumed to have no the null controllability or the backward uniqueness property. In this study, minimal time and minimal norm control problems depend on two parameters, respectively. Whether these problems hold the bang-bang property also depend on the parameters. We study the bang-bang property for different parameters for minimal time and minimal norm control problems, by assuming some kinds of weak controllability and unique continuation property. These two properties automatically hold for general time-invariant finitely dimensional controlled systems.

[1]  Lijuan Wang,et al.  Bang-bang property for time optimal control of semilinear heat equation , 2014 .

[2]  H. Fattorini Existence of singular extremals and singular functionals in reachable spaces , 2001 .

[3]  GengshengBB Wang,et al.  Advantages for controls imposed in a proper subset , 2012, 1201.3967.

[4]  H. O. Fattorini,et al.  The time-optimal control problem in Banach spaces , 1974 .

[5]  Cristiana J. Silva,et al.  Smooth Regularization of Bang-Bang Optimal Control Problems , 2010, IEEE Transactions on Automatic Control.

[6]  Kazufumi Ito,et al.  Semismooth Newton Methods for Time-Optimal Control for a Class of ODEs , 2010, SIAM J. Control. Optim..

[7]  A. Benabdallah,et al.  Minimal time of controllability of two parabolic equations with disjoint control and coupling domains , 2014 .

[8]  Enrique Zuazua,et al.  Numerical approximation of null controls for the heat equation: Ill-posedness and remedies , 2010 .

[9]  Gengsheng Wang,et al.  An Approach to the Optimal Time for a Time Optimal Control Problem of an Internally Controlled Heat Equation , 2012, SIAM J. Control. Optim..

[10]  H. O. Fattorini,et al.  Time-Optimal Control of Solutions of Operational Differenital Equations , 1964 .

[11]  Viorel Barbu,et al.  Analysis and control of nonlinear infinite dimensional systems , 1993 .

[12]  Qi Lü,et al.  Bang-bang principle of time optimal controls and null controllability of fractional order parabolic equations , 2010 .

[13]  Gengsheng Wang,et al.  Equivalence of Three Different Kinds of Optimal Control Problems for Heat Equations and Its Applications , 2013, SIAM J. Control. Optim..

[14]  Marius Tucsnak,et al.  Maximum Principle and Bang-Bang Property of Time Optimal Controls for Schrödinger-Type Systems , 2013, SIAM J. Control. Optim..

[15]  Gengsheng Wang,et al.  Attainable Subspaces and the Bang-Bang Property of Time Optimal Controls for Heat Equations , 2014, SIAM J. Control. Optim..

[16]  E. Schmidt,et al.  The “Bang-Bang” Principle for the Time-Optimal Problem in Boundary Control of the Heat Equation , 1980 .

[17]  E. Zuazua,et al.  Norm saturating property of time optimal controls for wave-type equations , 2016 .

[18]  T. Seidman,et al.  An Abstract Bang-Bang Principle and Time-Optimal Boundary Control of the Heat Equation , 1997 .

[19]  Paola Loreti,et al.  Regularity of the Minimum Time Function and Minimum Energy Problems: The Linear Case , 1999 .

[20]  H. O. Fattorini,et al.  Infinite dimensional linear control systems : the time optimal and norm optimal problems , 2005 .

[21]  Nadir Arada,et al.  Time optimal problems with Dirichlet boundary controls , 2003 .

[22]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[23]  Ping Lin,et al.  Some properties for blowup parabolic equations and their application , 2014 .

[24]  J. Coron Control and Nonlinearity , 2007 .

[25]  Farid Ammar Khodja,et al.  A new relation between the condensation index of complex sequences and the null controllability of parabolic systems , 2013 .

[26]  J. Drife,et al.  The third edition , 2014 .

[27]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[28]  Huaiqiang Yu,et al.  Approximation of Time Optimal Controls for Heat Equations with Perturbations in the System Potential , 2013, SIAM J. Control. Optim..

[29]  Kim Dang Phung,et al.  An observability estimate for parabolic equations from a measurable set in time and its applications , 2013 .

[31]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[32]  H. Fattorini Time and norm optimal controls: A survey of recent results and open problems , 2011 .

[33]  J. Apraiz,et al.  Observability Inequalities and Measurable Sets , 2012, 1202.4876.

[34]  A. Benabdallah,et al.  Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences , 2014 .

[35]  Kim Dang Phung,et al.  On the existence of time optimal controls for linear evolution equations , 2007 .

[36]  A time optimal control problem of some linear switching controlled ordinary differential equations , 2012 .

[37]  Hongwei Lou,et al.  Time optimal control problems for some non-smooth systems , 2013 .

[38]  Karl Kunisch,et al.  Time optimal controls of the linear Fitzhugh–Nagumo equation with pointwise control constraints , 2012, Journal of mathematical analysis and applications.

[39]  Enrique Zuazua,et al.  On the Equivalence of Minimal Time and Minimal Norm Controls for Internally Controlled Heat Equations , 2012, SIAM J. Control. Optim..

[40]  Ionel Roventa,et al.  Time optimal boundary controls for the heat equation , 2012 .

[41]  Jiongmin Yong,et al.  Optimal Control Theory for Infinite Dimensional Systems , 1994 .

[42]  Gengsheng Wang,et al.  Linfinity-Null Controllability for the Heat Equation and Its Consequences for the Time Optimal Control Problem , 2008, SIAM J. Control. Optim..

[43]  Karl Kunisch,et al.  TIME OPTIMAL CONTROL OF THE HEAT EQUATION WITH POINTWISE CONTROL CONSTRAINTS , 2013 .

[44]  An observability estimate for the heat equation from a product of two measurable sets , 2012 .