Selective growth of ZnO nanorods on pre-coated ZnO buffer layer

Abstract Hexagonal ZnO nanorods have been selectively synthesized via vapor–solid process without gold catalysis on a pre-coated ZnO buffer layer. The presence of nanometer-sized pits or hills on the surface of ZnO buffer layer provides nucleation sites to which the zinc vapor is transferred and condensed. Followed by immediate oxidation the ZnO nanorods were grown on the buffer layer. Contrarily, the SEM images hardly show growth of irregular ZnO nanometer-sized products on the bare sapphire substrate. Besides a strong ultra-violet emission at 3.26 eV observed at room temperature, the coupling strength of the radiative transition to LO-phonon polarization field was deduced in use of the Huang–Rhys factor from low temperature photoluminescence spectra to show that single crystalline ZnO nanorods.

[1]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[2]  Ning Wang,et al.  FORMATION OF ZNO NANOSTRUCTURES BY A SIMPLE WAY OF THERMAL EVAPORATION , 2002 .

[3]  Shui-Tong Lee,et al.  Synthesis and microstructure of gallium phosphide nanowires , 2001 .

[4]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[5]  G. Meng,et al.  Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties , 2000 .

[6]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[7]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[8]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[9]  Wenjun Wang,et al.  Growth and morphologies of large-scale SnO2 nanowires, nanobelts and nanodendrites , 2003 .

[10]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[11]  T. Kang,et al.  Gallium arsenide crystalline nanorods grown by molecular-beam epitaxy , 2001 .

[12]  Charles M. Lieber,et al.  Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites , 1997 .

[13]  Weizhuo Zhong,et al.  Growth mechanism and growth habit of oxide crystals , 1999 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Kun Huang,et al.  Theory of light absorption and non-radiative transitions in F-centres , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  Claus Klingshirn,et al.  Semiconductor Optics , 1995 .

[17]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[18]  Gyu-Chul Yi,et al.  Excitonic emissions observed in ZnO single crystal nanorods , 2003 .

[19]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[20]  D. Look,et al.  Residual Native Shallow Donor in ZnO , 1999 .

[21]  Congkang Xu,et al.  A simple and novel route for the preparation of ZnO nanorods , 2002 .

[22]  Shui-Tong Lee,et al.  Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers , 2002 .

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[25]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[26]  Xinsheng Peng,et al.  Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties , 2002 .

[27]  Zhong Lin Wang,et al.  Bicrystalline zinc oxide nanowires , 2003 .