Adaptive diffusion flow active contours for image segmentation

Gradient vector flow (GVF) active contour model shows good performance at concavity convergence and initialization insensitivity, yet it is susceptible to weak edges as well as deep and narrow concavity. This paper proposes a novel external force, called adaptive diffusion flow (ADF), with adaptive diffusion strategies according to the characteristics of an image region in the parametric active contour model framework for image segmentation. We exploit a harmonic hypersurface minimal functional to substitute smoothness energy term in GVF for alleviating the possible leakage. We make use of the p(x) harmonic maps, in which p(x) ranges from 1 to 2, such that the diffusion process of the flow field can be adjusted adaptively according to image characteristics. We also incorporate an infinity laplacian functional to ADF active contour model to drive the active contours onto deep and narrow concave regions of objects. The experimental results demonstrate that ADF active contour model possesses several good properties, including noise robustness, weak edge preserving and concavity convergence.

[1]  Xianghua Xie,et al.  MAC: Magnetostatic Active Contour Model , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Annupan Rodtook,et al.  Continuous force field analysis for generalized gradient vector flow field , 2010, Pattern Recognit..

[3]  Bing Li,et al.  Active Contour External Force Using Vector Field Convolution for Image Segmentation , 2007, IEEE Transactions on Image Processing.

[4]  Chunming Li,et al.  Segmentation of external force field for automatic initialization and splitting of snakes , 2005, Pattern Recognit..

[5]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[6]  Michael H. F. Wilkinson,et al.  CPM: a deformable model for shape recovery and segmentation based on charged particles , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Scott T. Acton,et al.  Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours , 2004, IEEE Transactions on Medical Imaging.

[8]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[9]  Tamás Szirányi,et al.  Harris function based active contour external force for image segmentation , 2012, Pattern Recognit. Lett..

[10]  Shaopei Lu,et al.  Gradient Vector Flow over Manifold for Active Contours , 2009, ACCV.

[11]  Say Wei Foo,et al.  Dynamic directional gradient vector flow for snakes , 2006, IEEE Transactions on Image Processing.

[12]  Jerry L. Prince,et al.  Fast numerical scheme for gradient vector flow computation using a multigrid method , 2007 .

[13]  Chak-Kuen Wong,et al.  Total variation image restoration: numerical methods and extensions , 1997, Proceedings of International Conference on Image Processing.

[14]  Jinshan Tang A multi-direction GVF snake for the segmentation of skin cancer images , 2009, Pattern Recognit..

[15]  Carole Le Guyader,et al.  Extrapolation of Vector Fields Using the Infinity Laplacian and with Applications to Image Segmentation , 2009, SSVM.

[16]  Tao Zhang,et al.  Tracking objects using density matching and shape priors , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[17]  Stanley Osher,et al.  Explicit Algorithms for a New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal , 2000, SIAM J. Sci. Comput..

[18]  Zeyun Yu,et al.  Normalized Gradient Vector Diffusion and Image Segmentation , 2002, ECCV.

[19]  Pavel Mrázek Selection of Optimal Stopping Time for Nonlinear Diffusion Filtering , 2001, Scale-Space.

[20]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[21]  Carole Le Guyader,et al.  Extrapolation of vector fields using the infinity Laplacian and with applications to image segmentation , 2009 .

[22]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[23]  Guopu Zhu,et al.  Gradient vector flow active contours with prior directional information , 2010, Pattern Recognit. Lett..

[24]  Yuanquan Wang,et al.  Harmonic gradient vector flow external force for snake model , 2008 .

[25]  Rachid Deriche,et al.  Geodesic active regions and level set methods for motion estimation and tracking , 2005, Comput. Vis. Image Underst..

[26]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[27]  Chongzhao Han,et al.  Force field analysis snake: an improved parametric active contour model , 2005, Pattern Recognit. Lett..

[28]  Chunming Li,et al.  Minimization of Region-Scalable Fitting Energy for Image Segmentation , 2008, IEEE Transactions on Image Processing.

[29]  Yunde Jia,et al.  Adaptive Diffusion Flow for Parametric Active Contours , 2010, 2010 20th International Conference on Pattern Recognition.

[30]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[31]  Lei Zhang,et al.  Active contours with selective local or global segmentation: A new formulation and level set method , 2010, Image Vis. Comput..

[32]  D CohenLaurent On active contour models and balloons , 1991 .

[33]  Ning Ji-feng,et al.  NGVF: An improved external force field for active contour model , 2007 .

[34]  Yunde Jia,et al.  On the Critical Point of Gradient Vector Flow Snake , 2007, ACCV.

[35]  David A. Clausi,et al.  Decoupled Active Contour (DAC) for Boundary Detection , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Jerry L. Prince,et al.  Generalized gradient vector flow external forces for active contours , 1998, Signal Process..

[37]  Daniel Cremers,et al.  Dynamical statistical shape priors for level set-based tracking , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Xianghua Xie,et al.  RAGS: region-aided geometric snake , 2004, IEEE Transactions on Image Processing.

[39]  Paul Y. S. Cheung,et al.  Boundary vector field for parametric active contours , 2007, Pattern Recognit..

[40]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[41]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..