Image processing for materials characterization: Issues, challenges and opportunities

This introductory paper aims at summarizing some problems and state-of-the-art techniques encountered in image processing for material analysis and design. Developing generic methods for this purpose is a complex task given the variability of the different image acquisition modalities (optical, scanning or transmission electron microscopy; surface analysis instrumentation, electron tomography, micro-tomography ...), and material composition (porous, fibrous, granular, hard materials, membranes, surfaces and interfaces ...). This paper presents an overview of techniques that have been and are currently developed to address this diversity of problems, such as segmentation, texture analysis, multiscale and directional features extraction, stochastic models and rendering, among others. Finally, it provides references to enter the issues, challenges and opportunities in materials characterization.

[1]  D Jeulin,et al.  Texture classification by statistical learning from morphological image processing: application to metallic surfaces , 2010, Journal of microscopy.

[2]  Laurent Jacques,et al.  A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity , 2011, Signal Process..

[3]  L. Reimer Scanning Electron Microscopy: Physics of Image Formation and Microanalysis , 1984 .

[4]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[5]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[6]  Giovanni Motta,et al.  Handbook of Data Compression , 2009 .

[7]  Jocelyn Chanussot,et al.  Multivariate Image Processing , 2009 .

[8]  Jesús Angulo,et al.  Stochastic Morphological Filtering and Bellman-Maslov Chains , 2013, ISMM.

[9]  Camille Couprie,et al.  Power Watershed: A Unifying Graph-Based Optimization Framework , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Jon Atli Benediktsson,et al.  Segmentation and classification of hyperspectral images using watershed transformation , 2010, Pattern Recognit..

[11]  Jesús Angulo,et al.  Classification of hyperspectral images by tensor modeling and additive morphological decomposition , 2013, Pattern Recognit..

[12]  D Jeulin,et al.  A quantitative morphological analysis of nanostructured ceria–silica composite catalysts , 2008, Journal of microscopy.

[13]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[14]  S. Lia,et al.  Adaptive reconstruction method for three-dimensional orientation imaging , 2013 .

[15]  Maxime Moreaud,et al.  Measurement of Palladium Crust Thickness on Catalysts by Optical Microscopy and Image Analysis , 2013, Microscopy and Microanalysis.

[16]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[17]  Hugues Talbot,et al.  Globally minimal surfaces by continuous maximal flows , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  I. M. Robertson,et al.  Towards an integrated materials characterization toolbox , 2013 .

[19]  Bahadir K. Gunturk,et al.  Image Restoration , 2012 .

[20]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[21]  Dimitri Van De Ville,et al.  Three-dimensional solid texture analysis in biomedical imaging: Review and opportunities , 2014, Medical Image Anal..

[22]  Amel Benazza-Benyahia,et al.  A Nonlinear Stein-Based Estimator for Multichannel Image Denoising , 2007, IEEE Transactions on Signal Processing.

[23]  Matthias Durr Multivariate Image Processing , 2016 .

[24]  S. Torquato Random Heterogeneous Materials , 2002 .

[25]  Dominique Jeulin,et al.  Mechanics of Random and Multiscale Microstructures , 2001, International Centre for Mechanical Sciences.

[26]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[27]  Richard K. Leach,et al.  Characterisation of Areal Surface Texture , 2013 .

[28]  Maxime Moreaud,et al.  Inverse Problem Approach for the Alignment of Electron Tomographic Series , 2014 .

[29]  Adrian Baddeley,et al.  Stereology for Statisticians , 2004 .

[30]  Volker Schmidt,et al.  Stochastic 3D modeling of fiber-based materials , 2012 .

[31]  R. Revel,et al.  TEM image analysis and modelling: application to boehmite nanoparticles , 2012, Journal of microscopy.

[32]  Yu Ding,et al.  Segmentation, Inference and Classification of Partially Overlapping Nanoparticles , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Hugues Talbot,et al.  A Spatial Regularization Approach for Vector Quantization , 2010, Journal of Mathematical Imaging and Vision.

[34]  Anand Asundi,et al.  Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review , 2009 .

[35]  Raphaël Couturier,et al.  Designing Scientific Applications on GPUs , 2013 .

[36]  Robert M. Suter,et al.  Adaptive reconstruction method for three-dimensional orientation imaging , 2013 .

[37]  Edward J. Delp,et al.  The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[38]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[39]  Jihn A. Mathews The Steel Age—1876 to 1926 , 1926 .

[40]  Syed Twareque Ali,et al.  Multidimensional Wavelets and Generalizations , 2014 .

[41]  Maria Petrou,et al.  Image processing - dealing with texture , 2020 .

[42]  Mukul Kumar,et al.  Electron Backscatter Diffraction in Materials Science , 2000 .

[43]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[45]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[46]  Jesús Angulo,et al.  Morphological Bilateral Filtering , 2013, SIAM J. Imaging Sci..

[47]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[48]  Heinz H. Bauschke,et al.  Fixed-Point Algorithms for Inverse Problems in Science and Engineering , 2011, Springer Optimization and Its Applications.

[49]  Xiang Zhang,et al.  Metamaterials: a new frontier of science and technology. , 2011, Chemical Society reviews.

[50]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[51]  Isabelle Bloch,et al.  Mathematical Morphology , 2007, Handbook of Spatial Logics.

[52]  John I. Goutsias,et al.  Mathematical Morphology and its Applications to Image and Signal Processing , 2000, Computational Imaging and Vision.

[53]  Joachim Ohser,et al.  3D Images of Materials Structures: Processing and Analysis , 2009 .

[54]  D. Jeulin,et al.  A multiscale microstructure model of carbon black distribution in rubber , 2011, Journal of microscopy.

[55]  Arthur C. Gossard,et al.  Understanding Materials Science: History, Properties, Applications , 1999 .

[56]  J. Roerdink,et al.  Mathematical Morphology and its Applications to Image and Signal Processing , 1998 .

[57]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[58]  S.J.B. Reed Schwartz, A.J., Kumar, M. and Adams, B.L. (Eds.) Electron Backscatter Diffraction in Materials Science. , 2001 .

[59]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[60]  R. Cahn,et al.  Made to Measure: New Materials for the 21st Century , 1998 .

[61]  L. Reimer,et al.  Scanning Electron Microscopy , 1984 .