An Auxiliary Function Method for Global Minimization in Integer Programming

An auxiliary function method is proposed for finding the global minimizer of integer programming problem. Firstly, we propose a method to transform the original problem into an integer programming with box constraint, which does not change the properties of the original problem. For the transformed problem, we propose an auxiliary function to escape from the current local minimizer and to get a better one. Then, based on the proposed auxiliary function, a new algorithm to find the global minimizer of integer programming is proposed. At last, numerical results are given to demonstrate the effectiveness and efficiency of the proposed method.

[1]  Georg Thierauf,et al.  Evolution strategies for solving discrete optimization problems , 1996 .

[2]  Vasek Chvátal,et al.  A Greedy Heuristic for the Set-Covering Problem , 1979, Math. Oper. Res..

[3]  Catherine M. Harmonosky,et al.  An improved simulated annealing simulation optimization method for discrete parameter stochastic systems , 2005, Comput. Oper. Res..

[4]  You-lin Shang,et al.  Finding discrete global minima with a filled function for integer programming , 2008, Eur. J. Oper. Res..

[5]  Y. Shang,et al.  A filled function method for finding a global minimizer on global integer optimization , 2005 .

[6]  C. Mohan,et al.  A Controlled Random Search Technique Incorporating the Simulated Annealing Concept for Solving Integer and Mixed Integer Global Optimization Problems , 1999, Comput. Optim. Appl..

[7]  Pascal Van Hentenryck,et al.  A simple tabu search for warehouse location , 2004, Eur. J. Oper. Res..

[8]  Gregory Dobson,et al.  Worst-Case Analysis of Greedy Heuristics for Integer Programming with Nonnegative Data , 1982, Math. Oper. Res..

[9]  S. Wu,et al.  Steady-state genetic algorithms for discrete optimization of trusses , 1995 .

[10]  Zhi-You Wu,et al.  A new filled function method for nonlinear integer programming problem , 2006, Appl. Math. Comput..

[11]  Gregory Gutin,et al.  When the greedy algorithm fails , 2004, Discret. Optim..

[12]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[13]  Volker Rehbock,et al.  A critical review of discrete filled function methods in solving nonlinear discrete optimization problems , 2010, Appl. Math. Comput..

[14]  Duan Li,et al.  Discrete Filled Function Method for Discrete Global Optimization , 2005, Comput. Optim. Appl..

[15]  Zhong Wan,et al.  New approach to global minimization of normal multivariate polynomial based on tensor , 2008 .

[16]  YangYongjian,et al.  A new discrete filled function algorithm for discrete global optimization , 2007 .

[17]  Awi Federgruen,et al.  The Greedy Procedure for Resource Allocation Problems: Necessary and Sufficient Conditions for Optimality , 1986, Oper. Res..

[18]  Duan Li,et al.  Discrete global descent method for discrete global optimization and nonlinear integer programming , 2007, J. Glob. Optim..

[19]  Yongjian Yang,et al.  A filled function method for constrained nonlinear integer programming , 2008 .

[20]  Fred Glover,et al.  Tabu Search and Adaptive Memory Programming — Advances, Applications and Challenges , 1997 .