The design of MA48: a code for the direct solution of sparse unsymmetric linear systems of equations

We describe the design of a new code for the direct solution of sparse unsymmetric linear systems of equations. The new code utilizes a novel restructuring of the symbolic and numerical phases, which increases speed and saves storage without sacrifice of numerical stability. Other features include switching to full-matrix processing in all phases of the computation enabling the use of all three levels of BLAS, treatment of rectangular or rank-deficient matrices, partial factorization, and integrated facilities for iterative refinement and error estimation.

[1]  H. Markowitz The Elimination form of the Inverse and its Application to Linear Programming , 1957 .

[2]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[3]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[4]  John K. Reid,et al.  An Implementation of Tarjan's Algorithm for the Block Triangularization of a Matrix , 1978, TOMS.

[5]  John K. Reid,et al.  Algorithm 529: Permutations To Block Triangular Form [F1] , 1978, TOMS.

[6]  John K. Reid,et al.  Some Design Features of a Sparse Matrix Code , 1979, TOMS.

[7]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[8]  Z. Zlatev On Some Pivotal Strategies in Gaussian Elimination by Sparse Technique , 1980 .

[9]  Iain S. Duff,et al.  MA28 --- A set of Fortran subroutines for sparse unsymmetric linear equations , 1980 .

[10]  R. Skeel Iterative refinement implies numerical stability for Gaussian elimination , 1980 .

[11]  Iain S. Duff,et al.  On Algorithms for Obtaining a Maximum Transversal , 1981, TOMS.

[12]  Iain S. Duff,et al.  Algorithm 575: Permutations for a Zero-Free Diagonal [F1] , 1981, TOMS.

[13]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[14]  J. Gilbert,et al.  Sparse Partial Pivoting in Time Proportional to Arithmetic Operations , 1986 .

[15]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[16]  Jack J. Dongarra,et al.  Algorithm 656: an extended set of basic linear algebra subprograms: model implementation and test programs , 1988, TOMS.

[17]  Nicholas J. Higham,et al.  FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.

[18]  Jack J. Dongarra,et al.  An extended set of FORTRAN basic linear algebra subprograms , 1988, TOMS.

[19]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[20]  Alex Pothen,et al.  Computing the block triangular form of a sparse matrix , 1990, TOMS.

[21]  Z. Zlatev Computational Methods for General Sparse Matrices , 1991 .

[22]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[23]  Joseph W. H. Liu,et al.  Exploiting Structural Symmetry in a Sparse Partial Pivoting Code , 1993, SIAM J. Sci. Comput..

[24]  J. K. Reid,et al.  MA48: A FORTRAN code for direct solution of sparse unsymmetric linear systems of equations , 1993 .

[25]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .