Electroweak radiative corrections to W -boson production at hadron colliders

The complete set of electroweak $O(\ensuremath{\alpha})$ corrections to the Drell-Yan-like production of W bosons is calculated and compared to an approximation provided by the leading term of an expansion about the W-resonance pole. All relevant formulas are listed explicitly, and particular attention is paid to issues of gauge invariance and the instability of the W bosons. A detailed discussion of numerical results underlines the phenomenological importance of the electroweak corrections to W-boson production at the Fermilab Tevatron and at the CERN Large Hadron Collider. While the pole expansion yields a good description of resonance observables, it is not sufficient for the high-energy tail of transverse-momentum distributions, relevant for new-physics searches.

[1]  U. Baur,et al.  Electroweak radiative corrections to W boson production in hadronic collisions , 1996, hep-ph/9807417.

[2]  Review of particle physics. Particle Data Group , 2000 .

[3]  H. Veltman Mass and width of unstable gauge bosons , 1994 .

[4]  D. Amidei,et al.  Future electroweak physics at the Fermilab Tevatron: Report of the TeV-2000 Study Group , 1996 .

[5]  Exact $O(\alpha)$ Gauge Invariant YFS Exponentiated Monte Carlo for (Un)Stable for (Un)Stable $W^+W^-$ Production At and Beyond LEP2 Energies , 1997, hep-ph/9705429.

[6]  T. Riemann,et al.  Energy-dependent width effects in e + e - -annihilation near the Z-boson pole , 1988 .

[7]  B. Pietrzyk,et al.  Update of the hadronic contribution to the QED vaccum polarization , 2001 .

[8]  T. D. Lee,et al.  Degenerate Systems and Mass Singularities , 1964 .

[9]  R. Stuart Gauge invariance, analyticity and physical observables at the Z0 resonance , 1991 .

[10]  W. Marciano,et al.  Erratum: Testing the standard model by precise determinations of W* and Z masses [Phys. Rv. D 29, 945 (1984)] , 1985 .

[11]  A. Denner,et al.  A Compact expression for the scalar one loop four point function , 1991 .

[12]  R. Kleiss,et al.  Hard photon effects inW± andZ0 decay , 1985 .

[13]  Marciano,et al.  Erratum: Radiative corrections to neutrino-induced neutral-current phenomena in the SU(2)L x U(1) theory , 1980, Physical review. D, Particles and fields.

[14]  et al.,et al.  Physics with e+e− linear colliders , 1997, hep-ph/9705442.

[15]  D. Wackeroth,et al.  Electroweak radiative corrections to e+e−→WW→4 fermions in double-pole approximation — the RacoonWW approach , 2000 .

[16]  Ansgar Denner,et al.  Feyn Calc―computer-algebraic calculation of Feynman amplitudes , 1991 .

[17]  F. Pauss,et al.  Towards a precise parton luminosity determination at the CERN LHC , 1997 .

[18]  TESLA Technical Design Report Part III: Physics at an e+e- Linear Collider , 2001, hep-ph/0106315.

[19]  H. Perlt,et al.  Electroweak radiative corrections and quark mass singularities , 1988 .

[20]  R. Kleiss Hard bremsstrahlung amplitudes fore+e− collisions with polarized beams at LEP/SLC energies , 1987 .

[21]  P. D. Causmaecker,et al.  Multiple bremsstrahlung in gauge theories at high energies (II). Single bremsstrahlung , 1982 .

[22]  A. Sirlin Radiative Corrections in the SU(2)L×U(1) Theory a , 1980 .

[23]  M. Seymour,et al.  The dipole formalism for the calculation of QCD jet cross sections at next-to-leading order , 1996, hep-ph/9602277.

[24]  A. Denner Techniques for the Calculation of Electroweak Radiative Corrections at the One‐Loop Level and Results for W‐physics at LEP 200 , 2007, 0709.1075.

[25]  R. Kleiss,et al.  The fermion-loop scheme for finite-width effects in e(+)e(-) annihilation into four fermions , 1996, hep-ph/9612260.

[26]  Roelof Hamberg,et al.  A complete calculation of the order αs2 correction to the Drell-Yan K-factor , 1991 .

[27]  A. Denner,et al.  Feyn Arts ― computer-algebraic generation of Feynman graphs and amplitudes , 1990 .

[28]  A. Sirlin,et al.  Radiative corrections to W and quark propagators in the resonance region , 1998, hep-ph/9807218.

[29]  Hadronic contributions to (g−2) of the leptons and to the effective fine structure constant α(MZ2) , 1995, hep-ph/9502298.

[30]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[31]  A. Denner,et al.  Infrared divergent scalar box integrals with applications in the electroweak standard model , 1990 .

[32]  Application of the background field method to the electroweak standard model , 1994, hep-ph/9410338.

[33]  Final state interaction in the production of heavy unstable particles , 1995, hep-ph/9501358.

[34]  Michael H. Seymour,et al.  A general algorithm for calculating jet cross sections in NLO QCD , 1996 .

[35]  M. Veltman,et al.  One-loop corrections for e + e - annihilation into μ + μ - in the Weinberg model , 1979 .

[36]  A general approach to photon radiation off fermions , 1999, hep-ph/9904440.

[37]  Barbara Mele Physics at LEP2 , 1997 .

[38]  Alan D. Martin,et al.  Parton distributions and the LHC: W and Z production , 2000 .

[39]  Vector boson production in hadronic collisions , 1997, hep-ph/9704239.

[40]  S. Dittmaier Weyl-van der Waerden formalism for helicity amplitudes of massive particles , 1998, hep-ph/9805445.

[41]  T. Kinoshita Mass singularities of Feynman amplitudes , 1962 .