Comparison of adaptive methods for one-dimensional parabolic systems

Abstract We describe two adaptive space-time hp -refinement algorithms for solving one-dimensional vector systems of parabolic partial differential equations. Solutions for both methods are calculated using Galerkin's method with a piecewise polynomial hierarchical basis in space. The first method, hpsirk , uses singly-implicit Runge-Kutta methods in time and integrates the spatial and temporal discretization strategies. The second, hpdassl , is a method-of-lines approach using a BDF code. The two methods are compared along with the algorithm epdcol as a benchmark on four nonlinear test problems.

[1]  Joseph E. Flaherty,et al.  A local refinement finite-element method for one-dimensional parabolic systems , 1990 .

[2]  B. Szabó Mesh design for the p-version of the finite element method , 1986 .

[3]  Joseph E. Flaherty,et al.  Integrated space-time adaptive hp -refinement methods for parabolic systems , 1995 .

[4]  Andrew J. Wathen,et al.  Moving finite element methods for evolutionary problems. II. Applications , 1988 .

[5]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[6]  Martin Berzins,et al.  Balancing Space and Time Errors in the Method of Lines for Parabolic Equations , 1991, SIAM J. Sci. Comput..

[7]  Kevin Burrage,et al.  A special family of Runge-Kutta methods for solving stiff differential equations , 1978 .

[8]  Wen Zhang DIFFUSIVE EFFECTS ON A CATALYTIC SURFACE REACTION: AN INITIAL BOUNDARY VALUE PROBLEM IN REACTION-DIFFUSION-CONVECTION EQUATIONS , 1993 .

[9]  Richard F. Sincovec,et al.  Algorithm 540: PDECOL, General Collocation Software for Partial Differential Equations [D3] , 1979, TOMS.

[10]  Joseph E. Flaherty,et al.  EXPERIMENTS WITH AN ADAPTIVE H-, P-, AND R-REFINEMENT FINITE ELEMENT METHOD FOR PARABOLIC SYSTEMS , 1992 .

[11]  Syvert P. Nørsett,et al.  Runge-Kutta methods with a multiple real eigenvalue only , 1976 .

[12]  Joseph E. Flaherty,et al.  A moving-mesh finite element method with local refinement for parabolic partial differential equations , 1986 .

[13]  Paul H. Muir,et al.  Algorithm 688: EPDCOL: a more efficient PDECOL code , 1991, TOMS.

[14]  I. Babuška,et al.  The finite element method for parabolic equations , 1982 .

[15]  John C. Butcher,et al.  A Transformed implicit Runge-Kutta Method , 1979, JACM.

[16]  Joseph E. Flaherty,et al.  High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations , 1993 .

[17]  Peter K. Moore,et al.  A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension , 1994 .

[18]  Recent developments in numerical methods and software for ODEs/DAEs/PDEs , 1992 .

[19]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[20]  Joseph E. Flaherty,et al.  High-order adaptive methods for parabolic systems , 1992 .