Convergence of Regularized Nonlocal Interaction Energies

Inspired by numerical studies of the aggregation equation, we study the effect of regularization on nonlocal interaction energies. We consider energies defined via a repulsive-attractive interaction kernel, regularized by convolution with a mollifier. We prove that, with respect to the 2-Wasserstein metric, the regularized energies $\Gamma$-converge to the unregularized energy and minimizers converge to minimizers. We then apply our results to prove $\Gamma$-convergence of the gradient flows, when restricted to the space of measures with bounded density.

[1]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[2]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[3]  J. A. Carrillo,et al.  Confinement for repulsive-attractive kernels , 2012, 1210.0602.

[4]  J. Carrillo,et al.  Uniqueness for Keller-Segel-type chemotaxis models , 2012, 1212.1255.

[5]  Michel Chipot,et al.  On global minimizers of repulsive–attractive power-law interaction energies , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  A. Bertozzi,et al.  Ring patterns and their bifurcations in a nonlocal model of biological swarms , 2015 .

[7]  G. Raoul,et al.  STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS , 2010 .

[8]  Sylvia Serfaty,et al.  Gamma-convergence of gradient flows on Hilbert and metric spaces and applications , 2011 .

[9]  Andrew J. Bernoff,et al.  A Primer of Swarm Equilibria , 2010, SIAM J. Appl. Dyn. Syst..

[10]  Eric Carlen,et al.  Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model , 2010, 1009.0134.

[11]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[12]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[13]  R. McCann STABLE ROTATING BINARY STARS AND FLUID IN A TUBE , 2006 .

[14]  Andrea L. Bertozzi,et al.  Blow-up dynamics for the aggregation equation with degenerate diffusion , 2013 .

[15]  Razvan C. Fetecau,et al.  Swarm dynamics and equilibria for a nonlocal aggregation model , 2011 .

[16]  D. Chandler,et al.  Dynamic pathways for viral capsid assembly. , 2005, Biophysical journal.

[17]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[18]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[19]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[20]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[21]  J. A. Carrillo,et al.  Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability , 2011, 1109.5258.

[22]  Emanuele Caglioti,et al.  A Non-Maxwellian Steady Distribution for One-Dimensional Granular Media , 1998 .

[23]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[24]  E. Mainini Well-posedness for a mean field model of Ginzburg–Landau vortices with opposite degrees , 2012 .

[25]  Pedro Elosegui,et al.  Extension of the Cucker-Smale Control Law to Space Flight Formations , 2009 .

[26]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[27]  Andrea L. Bertozzi,et al.  A blob method for the aggregation equation , 2014, Math. Comput..

[28]  Katy Craig Nonconvex gradient flow in the Wasserstein metric and applications to constrained nonlocal interactions , 2015, 1512.07255.

[29]  Razvan C. Fetecau,et al.  On minimizers of interaction functionals with competing attractive and repulsive potentials , 2015 .

[30]  F. Poupaud,et al.  Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .

[31]  Andrea L. Bertozzi,et al.  Multi-Vehicle Flocking: Scalability of Cooperative Control Algorithms using Pairwise Potentials , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[32]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[33]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[34]  Jesús Rosado,et al.  Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods , 2009 .

[35]  T. Zhukovskaya,et al.  Functional Inequalities , 2021, Inequalities in Analysis and Probability.

[36]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[37]  A. Majda,et al.  Vortex methods. II. Higher order accuracy in two and three dimensions , 1982 .

[38]  D. Slepčev,et al.  Existence of Ground States of Nonlocal-Interaction Energies , 2014, 1405.5146.

[39]  D. Wales Energy landscapes of clusters bound by short-ranged potentials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  C. Villani Topics in Optimal Transportation , 2003 .

[41]  A. Bertozzi,et al.  Stability of ring patterns arising from two-dimensional particle interactions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  J. Carrillo,et al.  Dimensionality of Local Minimizers of the Interaction Energy , 2012, 1210.6795.

[43]  Hongjie Dong The aggregation equation with power-law kernels: ill-posedness, mass concentration and similarity solutions , 2010 .

[44]  J. Carrillo,et al.  Existence of Compactly Supported Global Minimisers for the Interaction Energy , 2014, 1405.5428.

[45]  Andrea L. Bertozzi,et al.  Finite-time blow-up of L∞-weak solutions of an aggregation equation , 2010 .

[46]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[47]  Andrea L. Bertozzi,et al.  Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations , 2012, SIAM J. Math. Anal..

[48]  Hongjie Dong The Aggregation Equation with Power-Law Kernels: Ill-Posedness, Mass Concentration and Similarity Solutions , 2011 .

[49]  David Uminsky,et al.  Stability and clustering of self-similar solutions of aggregation equations , 2012 .

[50]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[51]  Andrew J. Majda,et al.  Vortex methods. I. Convergence in three dimensions , 1982 .

[52]  R. Fetecau,et al.  Equilibria of biological aggregations with nonlocal repulsive-attractive interactions , 2011, 1109.2864.

[53]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[54]  Andrea L. Bertozzi,et al.  AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS , 2012 .

[55]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[56]  F. Hiai,et al.  Logarithmic energy as entropy functional , 1998 .

[57]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[58]  Andrea L. Bertozzi,et al.  Self-Similar Blowup Solutions to an Aggregation Equation in Rn , 2010, SIAM J. Appl. Math..

[59]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[60]  Djalil CHAFAÏ,et al.  First order global asymptotics for confined particles with singular pair repulsion , 2013, 1304.7569.

[61]  J. Carrillo,et al.  Regularity of Local Minimizers of the Interaction Energy Via Obstacle Problems , 2014, 1406.4040.

[62]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[63]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .

[64]  J. A. Carrillo,et al.  The derivation of swarming models: Mean-field limit and Wasserstein distances , 2013, 1304.5776.

[65]  Salvatore Torquato,et al.  Optimized interactions for targeted self-assembly: application to a honeycomb lattice. , 2005, Physical review letters.

[66]  Edoardo Mainini A global uniqueness result for an evolution problem arising in superconductivity , 2009 .

[67]  Marion Kee,et al.  Analysis , 2004, Machine Translation.