Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain?

New technologies in neuroscience generate reams of data at an exponentially increasing rate, spurring the design of very-large-scale data-mining initiatives. Several supranational ventures are contemplating the possibility of achieving, within the next decade(s), full simulation of the human brain.

[1]  Moritz Helmstaedter,et al.  The Mutual Inspirations of Machine Learning and Neuroscience , 2015, Neuron.

[2]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[3]  Stefan Theil Trouble in Mind , 2015 .

[4]  C. von der Malsburg,et al.  Am I Thinking Assemblies , 1986 .

[5]  Gilles Laurent,et al.  Transient Dynamics for Neural Processing , 2008, Science.

[6]  F. Collins,et al.  The Human Genome Project: Lessons from Large-Scale Biology , 2003, Science.

[7]  Adam R Ferguson,et al.  Big data from small data: data-sharing in the 'long tail' of neuroscience , 2014, Nature Neuroscience.

[8]  E. Kandel,et al.  Neuroscience thinks big (and collaboratively) , 2013, Nature Reviews Neuroscience.

[9]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[10]  Lorenz Pammer,et al.  Comparative approaches to cortical microcircuits , 2016, Current Opinion in Neurobiology.

[11]  E. Marder,et al.  From the connectome to brain function , 2013, Nature Methods.

[12]  J. Touryan,et al.  Spatial Structure of Complex Cell Receptive Fields Measured with Natural Images , 2005, Neuron.

[13]  D. McCormick,et al.  Neural control of brain state , 2014, Current Opinion in Neurobiology.

[14]  P M MILNER,et al.  The cell assembly: Mark II. , 1957, Psychological review.

[15]  Joseph J. Paton,et al.  Big behavioral data: psychology, ethology and the foundations of neuroscience , 2014, Nature Neuroscience.

[16]  Bruno A. Olshausen,et al.  Book Review , 2003, Journal of Cognitive Neuroscience.

[17]  Konrad Paul Kording,et al.  Could a Neuroscientist Understand a Microprocessor? , 2016, bioRxiv.

[18]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[19]  L. Luo,et al.  It takes the world to understand the brain , 2015, Science.

[20]  L. Cooper,et al.  A theory for the development of feature detecting cells in visual cortex , 1975, Biological Cybernetics.

[21]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[22]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[23]  David Cyranoski,et al.  Marmosets are stars of Japan’s ambitious brain project , 2014, Nature.

[24]  David J. Anderson,et al.  Toward a Science of Computational Ethology , 2014, Neuron.

[25]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[26]  Florian Engert,et al.  Large-scale imaging in small brains , 2015, Current Opinion in Neurobiology.

[27]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[28]  R Linsker,et al.  From basic network principles to neural architecture: emergence of spatial-opponent cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[30]  Trevor Bekolay,et al.  A Large-Scale Model of the Functioning Brain , 2012, Science.

[31]  Emery N. Brown,et al.  The BRAIN Initiative: developing technology to catalyse neuroscience discovery , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  P. Drew,et al.  Neurovascular Coupling and Decoupling in the Cortex during Voluntary Locomotion , 2014, The Journal of Neuroscience.

[33]  Esther Landhuis,et al.  Neuroscience: Big brain, big data , 2017, Nature.

[34]  P. Anderson More is different. , 1972, Science.

[35]  J. Haynes A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives , 2015, Neuron.

[36]  Israel Nelken,et al.  Local versus global scales of organization in auditory cortex , 2014, Trends in Neurosciences.

[37]  Anders Lansner,et al.  Biophysically detailed modelling of microcircuits and beyond , 2005, Trends in Neurosciences.

[38]  R Linsker,et al.  From basic network principles to neural architecture: emergence of orientation-selective cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[40]  Michelle L. McGowan,et al.  Big data, open science and the brain: lessons learned from genomics , 2014, Front. Hum. Neurosci..

[41]  Michael Häusser,et al.  Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo , 2014, Nature Methods.

[42]  Barbara Lom,et al.  Looking Inside the Brain: The Power of Neuroimaging. , 2015 .

[43]  Ulrike Felt,et al.  Taking European Knowledge Society Seriously , 2009 .

[44]  Yves Frégnac,et al.  Neuroscience: Where is the brain in the Human Brain Project? , 2014, Nature.

[45]  Denis Noble,et al.  A theory of biological relativity: no privileged level of causation , 2012, Interface Focus.

[46]  R. Reid,et al.  Specificity and randomness in the visual cortex , 2007, Current Opinion in Neurobiology.

[47]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[48]  Chaim Zins,et al.  Conceptual approaches for defining data, information, and knowledge , 2007, J. Assoc. Inf. Sci. Technol..

[49]  David S. Greenberg,et al.  Rats maintain an overhead binocular field at the expense of constant fusion , 2013, Nature.

[50]  Meredith Wadman,et al.  Behind the scenes of a brain-mapping moon shot , 2013, Nature.

[51]  Nikos K. Logothetis,et al.  fMRI at High Spatial Resolution: Implications for BOLD-Models , 2016, Front. Comput. Neurosci..

[52]  Kelly Rae Chi Neural modelling: Abstractions of the mind , 2016, Nature.

[53]  Silvia Arber BRAIN Initiative and Human Brain Project: Hopes and Reservations , 2013, Cell.

[54]  Ling Wang,et al.  Mu-ming Poo: China Brain Project and the future of Chinese neuroscience , 2017 .

[55]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[56]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[57]  K. Deisseroth,et al.  Engineering Approaches to Illuminating Brain Structure and Dynamics , 2013, Neuron.

[58]  J Anthony Movshon,et al.  Putting big data to good use in neuroscience , 2014, Nature Neuroscience.

[59]  Gerald M Edelman,et al.  Learning in and from Brain-Based Devices , 2007, Science.

[60]  Yves Frégnac,et al.  Hidden Complexity of Synaptic Receptive Fields in Cat V1 , 2014, The Journal of Neuroscience.

[61]  G. Rees,et al.  Neuroimaging: Decoding mental states from brain activity in humans , 2006, Nature Reviews Neuroscience.

[62]  Christof Koch,et al.  Neuroscience: Observatories of the mind , 2012, Nature.

[63]  Cori Bargmann,et al.  High-throughput imaging of neuronal activity in Caenorhabditis elegans , 2013, Proceedings of the National Academy of Sciences.

[64]  M. Schölvinck,et al.  Neural basis of global resting-state fMRI activity , 2010, Proceedings of the National Academy of Sciences.

[65]  S. Dehaene,et al.  Characterizing the dynamics of mental representations: the temporal generalization method , 2014, Trends in Cognitive Sciences.

[66]  M. Moulins,et al.  Construction of a pattern-generating circuit with neurons of different networks , 1991, Nature.

[67]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[68]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[69]  Henry Markram,et al.  Seven challenges for neuroscience. , 2013, Functional neurology.

[70]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[71]  Yves Frégnac,et al.  Cortical Correlates of Low-Level Perception: From Neural Circuits to Percepts , 2015, Neuron.

[72]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[73]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[74]  Alexandre Pouget,et al.  A better way to crack the brain , 2016, Nature.

[75]  Hans Knutsson,et al.  Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates , 2016, Proceedings of the National Academy of Sciences.

[76]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[77]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing. , 1997, Cerebral cortex.

[78]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[79]  Noah D. Brenowitz,et al.  Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis , 2012, Proceedings of the National Academy of Sciences.

[80]  Kelly Rae Chi,et al.  The dark side of the human genome , 2016, Nature.

[81]  Marie-Eve Laramée,et al.  Visual cortical areas of the mouse: comparison of parcellation and network structure with primates , 2015, Front. Neural Circuits.

[82]  Henry Markram,et al.  The human brain project. , 2012, Scientific American.

[83]  Leslie Roberts Genome backlash going full force. , 1990, Science.

[84]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[85]  Rodney J. Douglas,et al.  Behavioral architecture of the cortical sheet , 2012, Current Biology.

[86]  P. Wolynes,et al.  The middle way. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[88]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[89]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[90]  Nicholas Cain,et al.  Inferring cortical function in the mouse visual system through large-scale systems neuroscience , 2016, Proceedings of the National Academy of Sciences.

[91]  Byron M. Yu,et al.  Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex , 2016, PLoS Comput. Biol..

[92]  M. Baker Neuroscience: Through the eyes of a mouse , 2013, Nature.

[93]  Tobias Bonhoeffer,et al.  Two-photon calcium imaging in mice navigating a virtual reality environment. , 2014, Journal of visualized experiments : JoVE.

[94]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[95]  John Bickle,et al.  Marr and Reductionism , 2015, Top. Cogn. Sci..

[96]  Y. Frégnac,et al.  A cellular analogue of visual cortical plasticity , 1988, Nature.

[97]  Olaf Sporns,et al.  Mapping the Connectome: Multi-Level Analysis of Brain Connectivity , 2012, Front. Neuroinform..

[98]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[99]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[100]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[101]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[102]  J. Fournier,et al.  Looking for the roots of cortical sensory computation in three-layered cortices , 2015, Current Opinion in Neurobiology.

[103]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[104]  Yves Frégnac,et al.  Adaptation of the simple or complex nature of V1 receptive fields to visual statistics , 2011, Nature Neuroscience.

[105]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[106]  Arie Rip,et al.  TAKING EUROPEAN KNOWLEDGE SOCIETY SERIOUSLY Report of the Expert Group on Science and Governance to the Science, Economy and Society Directorate, Directorate-General for Research, European Commission , 2007 .

[107]  Y. Frégnac,et al.  In vitro and in vivo measures of evoked excitatory and inhibitory conductance dynamics in sensory cortices , 2008, Journal of Neuroscience Methods.

[108]  Victor Ya. Frenkel Yakov Ilich Frenkel , 1996 .

[109]  Thomas L. Griffiths,et al.  Supplementary Information for Natural Speech Reveals the Semantic Maps That Tile Human Cerebral Cortex , 2022 .

[110]  M. Carandini From circuits to behavior: a bridge too far? , 2012, Nature Neuroscience.

[111]  R. Turner,et al.  Deficient approaches to human neuroimaging , 2014, Front. Hum. Neurosci..

[112]  M. Häusser,et al.  All-Optical Interrogation of Neural Circuits , 2015, The Journal of Neuroscience.

[113]  M. Orger,et al.  Whole-Brain Activity Maps Reveal Stereotyped, Distributed Networks for Visuomotor Behavior , 2014, Neuron.

[114]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[115]  R Linsker,et al.  From basic network principles to neural architecture: emergence of orientation columns. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[116]  Christof Koch,et al.  Worldwide initiatives to advance brain research , 2016, Nature Neuroscience.

[117]  Florian Engert The Big Data Problem: Turning Maps into Knowledge , 2014, Neuron.

[118]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[119]  J. Bower 20 Years of Computational Neuroscience , 2013, Springer Series in Computational Neuroscience.

[120]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  C. Eliasmith,et al.  The use and abuse of large-scale brain models , 2014, Current Opinion in Neurobiology.

[122]  David A. Leopold,et al.  The marmoset monkey as a model for visual neuroscience , 2015, Neuroscience Research.

[123]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[124]  J. Changeux,et al.  Experimental and Theoretical Approaches to Conscious Processing , 2011, Neuron.

[125]  Yves Frégnac,et al.  Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons , 2013, Front. Neural Circuits.

[126]  Richard Jones The economy of promises. , 2008, Nature nanotechnology.

[127]  Stephen M. Smith,et al.  Advances and Pitfalls in the Analysis and Interpretation of Resting-State FMRI Data , 2010, Front. Syst. Neurosci..

[128]  Richard P. Cooper,et al.  Beyond Single-Level Accounts: The Role of Cognitive Architectures in Cognitive Scientific Explanation , 2015, Top. Cogn. Sci..

[129]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[130]  R. chef Sciences et technologies émergentes : Pourquoi tant de promeses ? Dirigé par Marc Audetat - Société d'Anthropologie des Connaissances , 2015 .

[131]  Michael M Yartsev,et al.  The emperor’s new wardrobe: Rebalancing diversity of animal models in neuroscience research , 2017, Science.