Improving Fingerprint Orientation Extraction

Computation of local orientations is a primary step in fingerprint recognition. A large number of approaches have been proposed in the literature, but no systematic quantitative evaluations have been done yet. We implemented and tested several well know methods and a plethora of their variants over a novel, specifically designed, benchmark, made available in the FVC-onGoing framework. We proved that parameter optimizations, pre- and post-processing stages can markedly improve accuracy of the baseline methods on bad quality fingerprints. Finally, in this paper we propose a novel adaptive method which selectively exploits accuracy of local-based analysis and learning-based global methods, thus achieving the overall best performance on a challenging dataset.

[1]  Sharath Pankanti,et al.  An evaluation of error confidence interval estimation methods , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[2]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[3]  Peng Li,et al.  Estimation of Fingerprint Orientation Field by Weighted 2D Fourier Expansion Model , 2010, 2010 20th International Conference on Pattern Recognition.

[4]  Will Light,et al.  Some optimality conditions for Chebyshev expansions , 1979 .

[5]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[6]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[7]  Sarat C. Dass Markov random field models for directional field and singularity extraction in fingerprint images , 2004, IEEE Transactions on Image Processing.

[8]  Alessandra Lumini,et al.  Fingerprint Classification by Directional Image Partitioning , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Kuang-chih Lee,et al.  Probabilistic orientation field estimation for fingerprint enhancement and verification , 2008, 2008 Biometrics Symposium.

[10]  Sharath Pankanti,et al.  Fingerprint enhancement , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[11]  Wei-Yun Yau,et al.  Residual orientation modeling for fingerprint enhancement and singular point detection , 2011, Pattern Recognit..

[12]  Axel Munk,et al.  Robust Orientation Field Estimation and Extrapolation Using Semilocal Line Sensors , 2009, IEEE Transactions on Information Forensics and Security.

[13]  Anil K. Jain,et al.  Fingerprint Image Enhancement: Algorithm and Performance Evaluation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Pedro R. Vizcaya,et al.  A nonlinear orientation model for global description of fingerprints , 1996, Pattern Recognit..

[15]  You Lin,et al.  An Adaptive Algorithm for Smoothing Fingerprint Orientation Fields , 2009, 2009 International Conference on Computational Intelligence and Natural Computing.

[16]  M.A. Oliveira,et al.  A multiscale directional operator and morphological tools for reconnecting broken ridges in fingerprint images , 2008, Pattern Recognit..

[17]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Horst Bischof,et al.  Active Fingerprint Ridge Orientation Models , 2009, ICB.

[19]  Barry G. Sherlock,et al.  A model for interpreting fingerprint topology , 1993, Pattern Recognit..

[20]  Jie Zhou,et al.  Modeling orientation fields of fingerprints with rational complex functions , 2004, Pattern Recognit..

[21]  Mohammad Sadegh Helfroush,et al.  A Conditional Selection of Orthogonal Legendre/Chebyshev Polynomials as a Novel Fingerprint Orientation Estimation Smoothing Method , 2009, 2009 Second International Conference on Machine Vision.

[22]  Richard Guest,et al.  Information technology -- 29107-7 Conformance testing methodology for biometric data interchange formats defined in ISO/IEC 19794 -- Part 7: Signature/sign time series data , 2011 .

[23]  Rafael C. Gonzales,et al.  Digital Image Processing -3/E. , 2012 .

[24]  D. Maio,et al.  Semi-automatic enhancement of very low quality fingerprints , 2009, 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis.

[25]  Xudong Jiang,et al.  Extracting image orientation feature by using integration operator , 2007, Pattern Recognit..

[26]  Venu Govindaraju,et al.  Fingerprint enhancement using STFT analysis , 2007, Pattern Recognit..

[27]  Axel Munk,et al.  Global Models for the Orientation Field of Fingerprints: An Approach Based on Quadratic Differentials , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jiankun Hu,et al.  A Fingerprint Orientation Model Based on 2D Fourier Expansion (FOMFE) and Its Application to Singular-Point Detection and Fingerprint Indexing , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Sabih H. Gerez,et al.  Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[31]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[32]  Horst Bischof,et al.  Modelling fingerprint ridge orientation using Legendre polynomials , 2010, Pattern Recognit..

[33]  Andrew P. Witkin,et al.  Analyzing Oriented Patterns , 1985, IJCAI.

[34]  Anil K. Jain,et al.  Adaptive flow orientation-based feature extraction in fingerprint images , 1995, Pattern Recognit..

[35]  Jie Zhou,et al.  A model-based method for the computation of fingerprints' orientation field , 2004, IEEE Transactions on Image Processing.

[36]  Davide Maltoni,et al.  Benchmarking Local Orientation Extraction in Fingerprint Recognition , 2010, 2010 20th International Conference on Pattern Recognition.

[37]  T. J. Rivlin The Chebyshev polynomials , 1974 .