Is the be incorporation the same in (311)A and (100) AlGaAs?

[1]  M. Henini,et al.  BE DOPING OF (311)A AND (100) AL0.24GA0.76AS GROWN BY MOLECULAR BEAM EPITAXY , 1996 .

[2]  M. Henini,et al.  Photoluminescence investigation of Si as p-type dopant in AlGaAs grown by molecular beam epitaxy on high-index planes , 1996 .

[3]  J. Bravman,et al.  Diffusion of implanted Be in AlxGa1−xAs as a function of Al concentration and anneal temperature , 1995 .

[4]  M. Henini,et al.  A comparison of Si-doped (100), (111) A, (111) B and (311) B AlxGa1-xAs samples grown by molecular beam epitaxy , 1995 .

[5]  P. Crump,et al.  Growth and electrical transport properties of very high mobility two‐dimensional hole gases displaying persistent photoconductivity , 1994 .

[6]  J. Harris,et al.  Optimization of contacts and mobilities for (001) oriented two‐dimensional hole gases , 1994 .

[7]  Lorenzo Pavesi,et al.  Photoluminescence of AlxGa1−xAs alloys , 1994 .

[8]  On the Composition Dependence of the Be Acceptor Energy Level in AlxGa1−xAs (0 ≦ x ≦ 1) , 1992 .

[9]  C. Caneau,et al.  Dependence of doping on substrate orientation for GaAs: C grown by OMVPE , 1992 .

[10]  K. Mochizuki,et al.  311)A substrates suppression of Be transport during GaAs molecular beam epitaxy , 1991 .

[11]  Y. Mori,et al.  Carbon incorporation in metalorganic chemical vapor deposition (Al,Ga)As films grown on (100), (311)A, and (311)B oriented GaAs substrates , 1987 .

[12]  E. Mendez,et al.  High mobility two‐dimensional hole gas in an Al0.26Ga0.74As/GaAs heterojunction , 1986 .

[13]  K. Shinozaki,et al.  Defect‐related emissions in photoluminescence spectra of AlxGa1−xAs grown by molecular beam epitaxy , 1984 .

[14]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .