Emission Quenching and First Evidence of Tb3+-to-As5+ Charge Transfer in Terbium(III) Ion-Doped YVxAs1–xO4 Solid-State Solution

The paper discusses the origin of emission quenching and formation of metal-to-metal charge transfer states in yttrium orthovanadate-arsenates doped with Tb3+ ions. For that purpose a series of hig...

[1]  P. Dorenbos [INVITED] Improved parameters for the lanthanide 4fq and 4fq−15d curves in HRBE and VRBE schemes that takes the nephelauxetic effect into account , 2020, Journal of Luminescence.

[2]  I. A. Zyatikov,et al.  High Efficient YVPO4 Luminescent Materials Activated by Europium , 2019, Crystals.

[3]  P. Boutinaud Rationalization of the Pr3+- to-transition metal charge transfer model: Application to the luminescence of Pr3+ in titano-niobates , 2019, Journal of Luminescence.

[4]  R. Wiglusz,et al.  Influence of the grain sizes on Stokes and anti-Stokes fluorescence in the Yb3+ and Tb3+ ions co-doped nanocrystalline fluorapatite , 2019, Journal of Alloys and Compounds.

[5]  P. Dorenbos The Pr3+ and Tb3+ ground state locations in compounds obtained from thermoluminescence and intervalence charge transfer studies , 2019, Optical Materials.

[6]  Jinghui Yan,et al.  Novel fluorescent label based on YVO4: Bi3+, Eu3+ for latent fingerprint detection , 2019, Dyes and Pigments.

[7]  S. D. Singh,et al.  Facile synthesis of re-dispersible YVO4:Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+) nanocrystals: Luminescence studies and sensing of Cu2+ ions , 2018, Journal of Luminescence.

[8]  Xianju Zhou,et al.  Tunable emission color of Li2SrSiO4:Tb3+ due to cross‐relaxation process and optical thermometry investigation , 2018 .

[9]  H. Höppe,et al.  High-pressure investigations of yttrium(III) oxoarsenate(V): Crystal structure and luminescence properties of Eu3+-doped scheelite-type Y[AsO4] from xenotime-type precursors , 2018, Journal of Solid State Chemistry.

[10]  Marcus W. Newrock,et al.  Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms , 2018, Scientific Data.

[11]  R. Wiglusz,et al.  Forgotten and Resurrected Chernovite-(Y): YAsO4 Doped with Eu3+ Ions as a Potential Nanosized Luminophore. , 2017, Inorganic chemistry.

[12]  P. Dorenbos Charge transfer bands in optical materials and related defect level location , 2017 .

[13]  N. Baadji,et al.  Effect of the vanadium concentration on structural and photoluminescence of YP1−xVxO4: 1 at. % Tb3+ nanophosphors , 2017 .

[14]  P. Millner,et al.  Sodium yttrium fluoride based upconversion nano phosphors for biosensing , 2015 .

[15]  T. Watari,et al.  Highly efficient NIR–NIR upconversion in potassium substituted CaMoO4:Tm3+, Yb3+ phosphor for potential biomedical applications , 2015 .

[16]  Vinod Kumar,et al.  Tunable and white emission from ZnO:Tb3+ nanophosphors for solid state lighting applications , 2014 .

[17]  F. Mezzadri,et al.  Tunable luminescence of Bi3+-doped YPxV1 − xO4 (0 ≤ x ≤1) , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  P. Dorenbos,et al.  Vacuum Referred Binding Energies of the Lanthanides in Transition Metal Oxide Compounds , 2014 .

[19]  Peng Yang,et al.  Synthesis of carboxyl-capped and bright YVO4:Eu,Bi nanoparticles and their applications in immunochromatographic test strip assay , 2013 .

[20]  A. Bednarkiewicz,et al.  Role of the sintering temperature and doping level in the structural and spectral properties of Eu-doped nanocrystalline YVO4. , 2012, Inorganic chemistry.

[21]  W. Pan,et al.  Theoretical investigations of the physical properties of zircon-type YVO4 , 2012 .

[22]  V. de Zea Bermudez,et al.  Progress on lanthanide-based organic-inorganic hybrid phosphors. , 2011, Chemical Society reviews.

[23]  Chun-Hua Yan,et al.  Biocompatible Bright YVO4:Eu Nanoparticles as Versatile Optical Bioprobes , 2010 .

[24]  P. Dorenbos,et al.  Lanthanide level location in transition metal complex compounds , 2010 .

[25]  P. Dorenbos,et al.  Charge transfer transitions in the transition metal oxides ABO4:Ln3+ and APO4:ln3+ (A=La, Gd, Y, Lu, Sc; B=V, Nb, Ta; Ln=lanthanide) , 2010 .

[26]  P. Dorenbos,et al.  Probing electron transfer processes in Y PO4:Ce, Sm by combined synchrotron–laser excitation spectroscopy , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  P. Dorenbos Lanthanide Charge Transfer Energies and Related Luminescence, Charge Carrier Trapping, and Redox Phenomena , 2009 .

[28]  P. Woodward,et al.  The electronic structures of vanadate salts: Cation substitution as a tool for band gap manipulation , 2009 .

[29]  Y. Inoue Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations , 2009 .

[30]  Hongwei Song,et al.  Microstructure and optical properties of Eu3+ activated YV1−xPxO4 phosphors , 2008 .

[31]  Chia Chin Wu,et al.  Synthesis and VUV Photoluminescence Characterization of (Y,Gd)(V,P)O4:Eu3+ as a Potential Red-emitting PDP Phosphor , 2007 .

[32]  Keyan Li,et al.  Estimation of electronegativity values of elements in different valence states. , 2006, The journal of physical chemistry. A.

[33]  Klaus Petermann,et al.  Continuous wave laser operation of Yb3+:YVO4 , 2004 .

[34]  P. Dorenbos f ? d transition energies of divalent lanthanides in inorganic compounds , 2003 .

[35]  K. Sohn,et al.  Combinatorial Search for New Red Phosphors of High Efficiency at VUV Excitation Based on the YRO4 (R = As, Nb, P, V) System , 2002 .

[36]  B. Chakoumakos,et al.  Crystal Structure Refinements of Zircon-Type MVO4 (M = Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu) , 1994 .

[37]  R. A. Fields,et al.  Highly efficient Nd:YVO4 diode‐laser end‐pumped laser , 1987 .

[38]  G. Mccarthy,et al.  The rare earths in modern science and technology. Vol. 3 , 1982 .

[39]  A. Louat,et al.  Rare-earth — oxygen bonding in the LnMO4 xenotime structure: Spectroscopic investigation and comparative study of ligand field modesl , 1977 .

[40]  R. C. Ropp,et al.  Yttrium phosphate-yttrium vanadate solid solutions and Vegard's Law , 1975 .

[41]  R. G. Delosh,et al.  Strong Quenching of Tb3+ Emission by Tb–V Interaction in YPO4–YVO4 , 1970 .

[42]  G. Blasse,et al.  Photoluminescent Efficiency of Phosphors with Electronic Transitions in Localized Centers , 1968 .

[43]  G. Blasse,et al.  Investigation of Some Ce3+‐Activated Phosphors , 1967 .

[44]  J. R. O'connor,et al.  UNUSUAL CRYSTAL‐FIELD ENERGY LEVELS AND EFFICIENT LASER PROPERTIES OF YVO4:Nd , 1966 .