The cannabinoid system and pain

[1]  K. Mackie,et al.  Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities , 2017, Neuropharmacology.

[2]  K. Mackie,et al.  Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence , 2017, Biological Psychiatry.

[3]  B. Cravatt,et al.  The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice , 2017, Neuropharmacology.

[4]  D. Finn,et al.  Characterisation of peroxisome proliferator-activated receptor signalling in the midbrain periaqueductal grey of rats genetically prone to heightened stress, negative affect and hyperalgesia , 2017, Brain Research.

[5]  J. Deschamps,et al.  Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. , 2017, ACS chemical neuroscience.

[6]  M. Roche,et al.  Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey. , 2016, Pharmacological research.

[7]  A. Pająk,et al.  The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain. , 2016, Pharmacological research.

[8]  Surjit Singh,et al.  What failed BIA 10–2474 Phase I clinical trial? Global speculations and recommendations for future Phase I trials , 2016, Journal of pharmacology & pharmacotherapeutics.

[9]  S. O'Sullivan,et al.  An update on PPAR activation by cannabinoids , 2016, British journal of pharmacology.

[10]  N. Moore Lessons from the fatal French study BIA-10-2474 , 2016, British Medical Journal.

[11]  K. Mackie,et al.  A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase , 2016, Molecular pain.

[12]  L. Marnett,et al.  Cyclooxygenase-2 inhibition reduces stress-induced affective pathology , 2016, eLife.

[13]  B. Cravatt,et al.  The Selective Monoacylglycerol Lipase Inhibitor MJN110 Produces Opioid-Sparing Effects in a Mouse Neuropathic Pain Model , 2016, The Journal of Pharmacology and Experimental Therapeutics.

[14]  M. Wood,et al.  Safety, Tolerability and Pharmacokinetics of FAAH Inhibitor V158866: A Double-Blind, Randomised, Placebo-Controlled Phase I Study in Healthy Volunteers , 2016, Drugs in R&D.

[15]  Ashley N. Ferreira,et al.  Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex , 2016, eNeuro.

[16]  V. Neugebauer,et al.  Rescue of Impaired mGluR5-Driven Endocannabinoid Signaling Restores Prefrontal Cortical Output to Inhibit Pain in Arthritic Rats , 2016, The Journal of Neuroscience.

[17]  D. Finn,et al.  Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains , 2016, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[18]  C. Vaughan,et al.  Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model , 2016, British journal of pharmacology.

[19]  U. Taschler,et al.  Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB1R signaling and anxiety‐like behavior , 2015, Journal of neurochemistry.

[20]  U. Taschler,et al.  Increased tonic cannabinoid CB1R activity and brain region-specific desensitization of CB1R Gi/o signaling axis in mice with global genetic knockout of monoacylglycerol lipase. , 2015, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[21]  D. Finn,et al.  High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity , 2015, The international journal of neuropsychopharmacology.

[22]  Zizhen Zhang,et al.  Role of Prelimbic GABAergic Circuits in Sensory and Emotional Aspects of Neuropathic Pain. , 2015, Cell reports.

[23]  R. Nahin Estimates of pain prevalence and severity in adults: United States, 2012. , 2015, The journal of pain : official journal of the American Pain Society.

[24]  L. Hrubá,et al.  Full Fatty Acid Amide Hydrolase Inhibition Combined with Partial Monoacylglycerol Lipase Inhibition: Augmented and Sustained Antinociceptive Effects with Reduced Cannabimimetic Side Effects in Mice , 2015, The Journal of Pharmacology and Experimental Therapeutics.

[25]  Xuemei Liu,et al.  Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety , 2015, Nature Communications.

[26]  Masahiko Watanabe,et al.  Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA Release , 2015, The Journal of Neuroscience.

[27]  D. Piomelli,et al.  Peripheral FAAH and soluble epoxide hydrolase inhibitors are synergistically antinociceptive. , 2015, Pharmacological research.

[28]  A. Lichtman,et al.  A Cannabinoid CB1 Receptor-Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects , 2015, Neuropsychopharmacology.

[29]  B. Cravatt,et al.  Selective Monoacylglycerol Lipase Inhibitors: Antinociceptive versus Cannabimimetic Effects in Mice , 2015, The Journal of Pharmacology and Experimental Therapeutics.

[30]  M. Binkowski,et al.  A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis , 2015, Pain.

[31]  Peter Kreiner,et al.  The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. , 2015, Annual review of public health.

[32]  D. Piomelli,et al.  Multitarget fatty acid amide hydrolase/cyclooxygenase blockade suppresses intestinal inflammation and protects against nonsteroidal anti‐inflammatory drug‐dependent gastrointestinal damage , 2015, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  P. Thanos,et al.  Fatty acid binding protein deletion suppresses inflammatory pain through endocannabinoid/N-acylethanolamine-dependent mechanisms , 2015, Molecular pain.

[34]  G. Muccioli,et al.  Harnessing the anti-inflammatory potential of palmitoylethanolamide. , 2014, Drug discovery today.

[35]  D. Finn,et al.  Stress-induced hyperalgesia , 2014, Progress in Neurobiology.

[36]  B. Cravatt,et al.  Combined inhibition of FAAH and COX produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models , 2014, Pharmacology Biochemistry and Behavior.

[37]  L. Marnett,et al.  Substrate-selective COX-2 inhibition as a novel strategy for therapeutic endocannabinoid augmentation. , 2014, Trends in pharmacological sciences.

[38]  M. Cifuentes,et al.  Localization of the cannabinoid CB1 receptor and the 2-AG synthesizing (DAGLα) and degrading (MAGL, FAAH) enzymes in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus , 2014, Front. Neuroanat..

[39]  D. Deutsch,et al.  Inhibition of Fatty Acid Binding Proteins Elevates Brain Anandamide Levels and Produces Analgesia , 2014, PloS one.

[40]  A. Lichtman,et al.  In vivo characterization of the highly selective monoacylglycerol lipase inhibitor KML29: antinociceptive activity without cannabimimetic side effects , 2014, British journal of pharmacology.

[41]  Masahiko Watanabe,et al.  Heterogeneous presynaptic distribution of monoacylglycerol lipase, a multipotent regulator of nociceptive circuits in the mouse spinal cord , 2014, The European journal of neuroscience.

[42]  J. Desroches,et al.  Endocannabinoids decrease neuropathic pain-related behavior in mice through the activation of one or both peripheral CB1 and CB2 receptors , 2014, Neuropharmacology.

[43]  V. Neugebauer,et al.  CB1 augments mGluR5 function in medial prefrontal cortical neurons to inhibit amygdala hyperactivity in an arthritis pain model , 2014, The European journal of neuroscience.

[44]  Johannes J. Letzkus,et al.  Long-Range Connectivity Defines Behavioral Specificity of Amygdala Neurons , 2014, Neuron.

[45]  D. Finn,et al.  Impaired endocannabinoid signalling in the rostral ventromedial medulla underpins genotype-dependent hyper-responsivity to noxious stimuli , 2014, PAIN®.

[46]  V. Galhardo,et al.  Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain , 2013, PAIN®.

[47]  V. Neugebauer,et al.  Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors. , 2013, Journal of neurophysiology.

[48]  S. Chattarji,et al.  Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure , 2013, Molecular Psychiatry.

[49]  F. Piscitelli,et al.  Piperazinyl carbamate fatty acid amide hydrolase inhibitors and transient receptor potential channel modulators as "dual-target" analgesics. , 2013, Pharmacological research.

[50]  J. P. Little,et al.  Synaptic Mechanisms Underlying Strong Reciprocal Connectivity between the Medial Prefrontal Cortex and Basolateral Amygdala , 2013, The Journal of Neuroscience.

[51]  V. Di Marzo,et al.  Non-psychotropic analgesic drugs from the endocannabinoid system: "magic bullet" or "multiple-target" strategies? , 2013, European journal of pharmacology.

[52]  Sachin Patel,et al.  Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation , 2013, Nature Neuroscience.

[53]  L. Parsons,et al.  Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors. , 2013, ACS chemical neuroscience.

[54]  R. Marek,et al.  The amygdala and medial prefrontal cortex: partners in the fear circuit , 2013, The Journal of physiology.

[55]  J. Porter,et al.  Fear Extinction Induces mGluR5-Mediated Synaptic and Intrinsic Plasticity in Infralimbic Neurons , 2013, The Journal of Neuroscience.

[56]  D. Finn,et al.  Evidence for a role of GABAergic and glutamatergic signalling in the basolateral amygdala in endocannabinoid-mediated fear-conditioned analgesia in rats , 2013, PAIN.

[57]  B. Cravatt,et al.  The monoacylglycerol lipase inhibitor JZL184 suppresses inflammatory pain in the mouse carrageenan model. , 2013, Life sciences.

[58]  V. Neugebauer,et al.  Modulation of pyramidal cell output in the medial prefrontal cortex by mGluR5 interacting with CB1 , 2013, Neuropharmacology.

[59]  J. Burston,et al.  Dynamic changes to the endocannabinoid system in models of chronic pain , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[60]  Stephen P. H. Alexander,et al.  Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat , 2012, British journal of pharmacology.

[61]  R. N. Takahashi,et al.  Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor , 2012, Proceedings of the National Academy of Sciences.

[62]  Stephen P. H. Alexander,et al.  Lack of effect of chronic pre‐treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system , 2012, British journal of pharmacology.

[63]  T. Smart,et al.  An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee , 2012, PAIN®.

[64]  Patrick Richard,et al.  The economic costs of pain in the United States. , 2012, The journal of pain : official journal of the American Pain Society.

[65]  Stephen Maren,et al.  Neural and cellular mechanisms of fear and extinction memory formation , 2012, Neuroscience & Biobehavioral Reviews.

[66]  T. Freund,et al.  Multiple functions of endocannabinoid signaling in the brain. , 2012, Annual review of neuroscience.

[67]  B. Cravatt,et al.  O-hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors. , 2012, ACS chemical neuroscience.

[68]  G. Jay,et al.  Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects. , 2012, British journal of clinical pharmacology.

[69]  D. Boger,et al.  The fatty acid amide hydrolase (FAAH) inhibitor PF‐3845 acts in the nervous system to reverse LPS‐induced tactile allodynia in mice , 2012, British journal of pharmacology.

[70]  D. Finn,et al.  The endocannabinoid system in the rat dorsolateral periaqueductal grey mediates fear‐conditioned analgesia and controls fear expression in the presence of nociceptive tone , 2012, British journal of pharmacology.

[71]  C. Pinard,et al.  Medial prefrontal cortical innervation of the intercalated nuclear region of the amygdala , 2012, Neuroscience.

[72]  D. Finn,et al.  A role for the ventral hippocampal endocannabinoid system in fear-conditioned analgesia and fear responding in the presence of nociceptive tone in rats , 2011, PAIN.

[73]  V. Neugebauer,et al.  Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA(A) receptors. , 2011, Journal of neurophysiology.

[74]  A. Pastor,et al.  Differential Role of Anandamide and 2-Arachidonoylglycerol in Memory and Anxiety-like Responses , 2011, Biological Psychiatry.

[75]  D. Nomura,et al.  Inhibition of Monoacylglycerol Lipase Attenuates Nonsteroidal Anti-Inflammatory Drug-Induced Gastric Hemorrhages in Mice , 2011, Journal of Pharmacology and Experimental Therapeutics.

[76]  A. Hohmann,et al.  Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain , 2011, British journal of pharmacology.

[77]  R. Hampson,et al.  Endocannabinoid tone versus constitutive activity of cannabinoid receptors , 2011, British journal of pharmacology.

[78]  V. Neugebauer,et al.  mGluR1, but not mGluR5, activates feed-forward inhibition in the medial prefrontal cortex to impair decision making. , 2011, Journal of neurophysiology.

[79]  D. Simone,et al.  Increasing 2-arachidonoyl glycerol signaling in the periphery attenuates mechanical hyperalgesia in a model of bone cancer pain. , 2011, Pharmacological research.

[80]  Benjamin F. Cravatt,et al.  Mechanistic and Pharmacological Characterization of PF-04457845: A Highly Potent and Selective Fatty Acid Amide Hydrolase Inhibitor That Reduces Inflammatory and Noninflammatory Pain , 2011, Journal of Pharmacology and Experimental Therapeutics.

[81]  D. Paré,et al.  Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. , 2011, Journal of neurophysiology.

[82]  K. Sätzler,et al.  Different Fear States Engage Distinct Networks within the Intercalated Cell Clusters of the Amygdala , 2011, The Journal of Neuroscience.

[83]  A. Lichtman,et al.  A FAAH-fetched approach to treat osteoarthritis pain , 2011, PAIN.

[84]  G. Quirk,et al.  Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons. , 2011, Cerebral cortex.

[85]  D. Finn,et al.  The effect of pain on cognitive function: A review of clinical and preclinical research , 2011, Progress in Neurobiology.

[86]  T. Dinan,et al.  Strain differences in the neurochemical response to chronic restraint stress in the rat: Relevance to depression , 2011, Pharmacology Biochemistry and Behavior.

[87]  D. Siniscalco,et al.  The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats , 2011, Molecular pain.

[88]  D. Tracey,et al.  A preconditioning nerve lesion inhibits mechanical pain hypersensitivity following subsequent neuropathic injury , 2011, Molecular pain.

[89]  D. Finn,et al.  Enhanced nociceptive responding in two rat models of depression is associated with alterations in monoamine levels in discrete brain regions , 2010, Neuroscience.

[90]  J. Long,et al.  Fatty acid amide hydrolase and monoacylglycerol lipase inhibitors produce anti-allodynic effects in mice through distinct cannabinoid receptor mechanisms. , 2010, The journal of pain : official journal of the American Pain Society.

[91]  M. Pangalos,et al.  Monoacylglycerol Lipase Activity Is a Critical Modulator of the Tone and Integrity of the Endocannabinoid System , 2010, Molecular Pharmacology.

[92]  P Jeffrey Conn,et al.  Discovery of Novel Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 5 Reveals Chemical and Functional Diversity and In Vivo Activity in Rat Behavioral Models of Anxiolytic and Antipsychotic Activity , 2010, Molecular Pharmacology.

[93]  A. Hohmann,et al.  Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism , 2010, Nature Neuroscience.

[94]  F. Luo,et al.  Increased thermal and mechanical nociceptive thresholds in rats with depressive-like behaviors , 2010, Brain Research.

[95]  Peter T. Nguyen,et al.  Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system , 2010, Nature Neuroscience.

[96]  Agnes L. Bodor,et al.  The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors , 2010, Nature Neuroscience.

[97]  D. Finn Endocannabinoid-mediated modulation of stress responses: physiological and pathophysiological significance. , 2010, Immunobiology.

[98]  X. Hou,et al.  The Role of Peripheral Cannabinoid Receptors Type 1 in Rats With Visceral Hypersensitivity Induced by Chronic Restraint Stress , 2010, Journal of neurogastroenterology and motility.

[99]  Stephen Maren,et al.  Strain difference in the effect of infralimbic cortex lesions on fear extinction in rats. , 2010, Behavioral neuroscience.

[100]  S. Petrosino,et al.  The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice. , 2010, Pharmacological research.

[101]  R. P. Landry,et al.  Evidence for a Role of Endocannabinoids, Astrocytes and p38 Phosphorylation in the Resolution of Postoperative Pain , 2010, PloS one.

[102]  D. Finn,et al.  Effects of intra‐basolateral amygdala administration of rimonabant on nociceptive behaviour and neuronal activity in the presence or absence of contextual fear , 2010, European journal of pain.

[103]  Hao Sun,et al.  Cognitive Impairment in Pain through Amygdala-Driven Prefrontal Cortical Deactivation , 2010, The Journal of Neuroscience.

[104]  Francisco Sotres-Bayon,et al.  Prefrontal control of fear: more than just extinction , 2010, Current Opinion in Neurobiology.

[105]  D. Paré,et al.  Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. , 2010, Physiological reviews.

[106]  V. Chapman,et al.  Endocannabinoid regulation of spinal nociceptive processing in a model of neuropathic pain , 2010, The European journal of neuroscience.

[107]  Johannes J. Letzkus,et al.  Neuronal circuits of fear extinction , 2010, The European journal of neuroscience.

[108]  June-Seek Choi,et al.  Lack of Medial Prefrontal Cortex Activation Underlies the Immediate Extinction Deficit , 2010, The Journal of Neuroscience.

[109]  B. Hudson,et al.  Ligand- and Heterodimer-Directed Signaling of the CB1 Cannabinoid Receptor , 2010, Molecular Pharmacology.

[110]  H. Zeilhofer Spinal cannabinoids – a double‐edged sword? (Commentary on Zhang et al.) , 2010, The European journal of neuroscience.

[111]  D. Nomura,et al.  Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo , 2009, Proceedings of the National Academy of Sciences.

[112]  A. Hohmann,et al.  The endocannabinoid system and pain. , 2009, CNS & neurological disorders drug targets.

[113]  A. Chocyk,et al.  Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin-but not parvalbumin- and calretinin-positive GABA-ergic neurons , 2009, Pharmacological reports : PR.

[114]  J. Katz,et al.  Understanding the co‐occurrence of anxiety disorders and chronic pain: state‐of‐the‐art , 2009, Depression and anxiety.

[115]  Alban Latremoliere,et al.  Central sensitization: a generator of pain hypersensitivity by central neural plasticity. , 2009, The journal of pain : official journal of the American Pain Society.

[116]  D. Boger,et al.  Blockade of Endocannabinoid-Degrading Enzymes Attenuates Neuropathic Pain , 2009, Journal of Pharmacology and Experimental Therapeutics.

[117]  Irene Tracey,et al.  The influence of negative emotions on pain: Behavioral effects and neural mechanisms , 2009, NeuroImage.

[118]  Masahiko Watanabe,et al.  Spinal Endocannabinoids and CB1 Receptors Mediate C-Fiber–Induced Heterosynaptic Pain Sensitization , 2009, Science.

[119]  V. Galhardo,et al.  Cognitive impairment of prefrontal-dependent decision-making in rats after the onset of chronic pain , 2009, Neuroscience.

[120]  Ryan K. Butler,et al.  Stress-induced analgesia , 2009, Progress in Neurobiology.

[121]  M. Antal,et al.  Neuronal and glial localization of the cannabinoid‐1 receptor in the superficial spinal dorsal horn of the rodent spinal cord , 2009, The European journal of neuroscience.

[122]  J. Long,et al.  Inhibitors of Endocannabinoid-Metabolizing Enzymes Reduce Precipitated Withdrawal Responses in THC-Dependent Mice , 2009, The AAPS Journal.

[123]  Masahiko Watanabe,et al.  Molecular architecture of endocannabinoid signaling at nociceptive synapses mediating analgesia , 2009, The European journal of neuroscience.

[124]  R. Stevens,et al.  Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. , 2009, Chemistry & biology.

[125]  D. Deutsch,et al.  Identification of intracellular carriers for the endocannabinoid anandamide , 2009, Proceedings of the National Academy of Sciences.

[126]  Jian Xu,et al.  mGluR5 Has a Critical Role in Inhibitory Learning , 2009, The Journal of Neuroscience.

[127]  N. Gavva Setbacks in the Clinical Development of TRPV1 Antagonists: What Next? , 2009 .

[128]  A. Vania Apkarian,et al.  Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain , 2009, Proceedings of the National Academy of Sciences.

[129]  C. Saper,et al.  COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. , 2009, The Journal of clinical investigation.

[130]  A. Lichtman,et al.  The case for the development of novel analgesic agents targeting both fatty acid amide hydrolase and either cyclooxygenase or TRPV1 , 2009, British journal of pharmacology.

[131]  M. Baliki,et al.  Towards a theory of chronic pain , 2009, Progress in Neurobiology.

[132]  Sandy J. Wilson,et al.  Biochemical and Biological Properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a Mechanism-Based Inhibitor of Fatty Acid Amide Hydrolase , 2009, Anesthesia and analgesia.

[133]  S. Woodhams,et al.  Dynamic regulation of the endocannabinoid system: implications for analgesia , 2009, Molecular pain.

[134]  D. Finn,et al.  Endocannabinoid-mediated enhancement of fear-conditioned analgesia in rats: Opioid receptor dependency and molecular correlates , 2008, PAIN.

[135]  D. R. Sagar,et al.  Inhibition of fatty acid amide hydrolase produces PPAR‐α‐mediated analgesia in a rat model of inflammatory pain , 2008, British journal of pharmacology.

[136]  L. Petrocellis,et al.  The analgesic effect of N-arachidonoyl-serotonin, a FAAH inhibitor and TRPV1 receptor antagonist, associated with changes in rostral ventromedial medulla and locus coeruleus cell activity in rats , 2008, Neuropharmacology.

[137]  D. Finn,et al.  Clinical correlates of stress-induced analgesia: Evidence from pharmacological studies , 2008, PAIN.

[138]  Benjamin F. Cravatt,et al.  Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects , 2008, Nature chemical biology.

[139]  Y. Li,et al.  Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat , 2008, Gut.

[140]  G. Marek,et al.  Activation of metabotropic glutamate 5 (mGlu5) receptors induces spontaneous excitatory synaptic currents in layer V pyramidal cells of the rat prefrontal cortex , 2008, Neuroscience Letters.

[141]  István Katona,et al.  Endocannabinoid signaling as a synaptic circuit breaker in neurological disease , 2008, Nature Medicine.

[142]  L. Saksida,et al.  Impaired Fear Extinction Learning and Cortico-Amygdala Circuit Abnormalities in a Common Genetic Mouse Strain , 2008, The Journal of Neuroscience.

[143]  R. Treede,et al.  The Kyoto protocol of IASP Basic Pain Terminology , 2008, PAIN®.

[144]  Stephen P. H. Alexander,et al.  Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain , 2008, Neuropharmacology.

[145]  J. Wiskerke,et al.  Cannabinoid modulation of executive functions. , 2008, European journal of pharmacology.

[146]  Mark J. Rose,et al.  Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans , 2008, PAIN.

[147]  T. Matsui,et al.  Stress‐induced analgesia in mice: evidence for interaction between endocannabinoids and cholecystokinin , 2008, The European journal of neuroscience.

[148]  Leyu Shi,et al.  Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice , 2008, Neuropharmacology.

[149]  S. Eisenstein,et al.  Cross-sensitization and cross-tolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stress-induced analgesia , 2008, Neuropharmacology.

[150]  Masahiko Watanabe,et al.  Enzymatic Machinery for Endocannabinoid Biosynthesis Associated with Calcium Stores in Glutamatergic Axon Terminals , 2008, The Journal of Neuroscience.

[151]  A. Hohmann,et al.  Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain , 2008, British journal of pharmacology.

[152]  B. Cravatt,et al.  A Comprehensive Profile of Brain Enzymes that Hydrolyze the Endocannabinoid 2‐Arachidonoylglycerol , 2007, Chemistry & biology.

[153]  Jennifer A. Geaga,et al.  URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices. , 2007, Chemistry & biology.

[154]  S. O'Sullivan,et al.  Cannabinoids go nuclear: evidence for activation of peroxisome proliferator‐activated receptors , 2007, British journal of pharmacology.

[155]  D. Finn,et al.  The effect of CB1 receptor antagonism in the right basolateral amygdala on conditioned fear and associated analgesia in rats , 2007, The European journal of neuroscience.

[156]  C. Fowler The contribution of cyclooxygenase‐2 to endocannabinoid metabolism and action , 2007, British journal of pharmacology.

[157]  Stephen P. H. Alexander,et al.  The complications of promiscuity: endocannabinoid action and metabolism , 2007, British journal of pharmacology.

[158]  Pedro Grandes,et al.  Molecular Components and Functions of the Endocannabinoid System in Mouse Prefrontal Cortex , 2007, PloS one.

[159]  A. Duranti,et al.  The Fatty Acid Amide Hydrolase Inhibitor URB597 (Cyclohexylcarbamic Acid 3′-Carbamoylbiphenyl-3-yl Ester) Reduces Neuropathic Pain after Oral Administration in Mice , 2007, Journal of Pharmacology and Experimental Therapeutics.

[160]  K. Mackie,et al.  Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors , 2007, Nature Neuroscience.

[161]  T. Kuner,et al.  A Molecular Basis of Analgesic Tolerance to Cannabinoids , 2007, The Journal of Neuroscience.

[162]  J. Desroches,et al.  The antinociceptive effects of intraplantar injections of 2‐arachidonoyl glycerol are mediated by cannabinoid CB2 receptors , 2007, British journal of pharmacology.

[163]  L. Petrocellis,et al.  Analgesic actions of N‐arachidonoyl‐serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors , 2007, British journal of pharmacology.

[164]  V. Neugebauer,et al.  Techniques for assessing knee joint pain in arthritis , 2007, Molecular pain.

[165]  S. Vandevoorde,et al.  Lack of selectivity of URB602 for 2‐oleoylglycerol compared to anandamide hydrolysis in vitro , 2007, British journal of pharmacology.

[166]  D. Barrett,et al.  Analgesic Effects of Fatty Acid Amide Hydrolase Inhibition in a Rat Model of Neuropathic Pain , 2006, The Journal of Neuroscience.

[167]  A. Hohmann,et al.  Rapid Broad-Spectrum Analgesia through Activation of Peroxisome Proliferator-Activated Receptor-α , 2006, Journal of Pharmacology and Experimental Therapeutics.

[168]  D. Piomelli,et al.  Synergistic antinociceptive effects of anandamide, an endocannabinoid, and nonsteroidal anti-inflammatory drugs in peripheral tissue: a role for endogenous fatty-acid ethanolamides? , 2006, European journal of pharmacology.

[169]  P. Beaulieu,et al.  Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain , 2006, Neuropharmacology.

[170]  Sandy J. Wilson,et al.  Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms , 2006, British journal of pharmacology.

[171]  Sandy J. Wilson,et al.  Inhibition of fatty acid amide hydrolase produces analgesia by multiple mechanisms , 2006 .

[172]  A. Hohmann,et al.  Role of the basolateral nucleus of the amygdala in endocannabinoid-mediated stress-induced analgesia , 2006, Neuroscience Letters.

[173]  A. Hohmann,et al.  Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia , 2006, Neuropharmacology.

[174]  T. Bisogno,et al.  Elevation of Endocannabinoid Levels in the Ventrolateral Periaqueductal Grey through Inhibition of Fatty Acid Amide Hydrolase Affects Descending Nociceptive Pathways via Both Cannabinoid Receptor Type 1 and Transient Receptor Potential Vanilloid Type-1 Receptors , 2006, Journal of Pharmacology and Experimental Therapeutics.

[175]  G. Uhl,et al.  Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain , 2006, Brain Research.

[176]  D. Piomelli,et al.  Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models , 2006, British journal of pharmacology.

[177]  D. Paré,et al.  Infralimbic cortex activation increases c-fos expression in intercalated neurons of the amygdala , 2005, Neuroscience.

[178]  C. Hillard,et al.  Endocannabinoids in neuroimmunology and stress. , 2005, Current drug targets. CNS and neurological disorders.

[179]  A. Hohmann,et al.  Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: Sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla , 2005, Neuropharmacology.

[180]  Paul Leonard Gabbott,et al.  Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers , 2005, The Journal of comparative neurology.

[181]  A. Christopoulos,et al.  Allosteric Modulation of the Cannabinoid CB1 Receptor , 2005, Molecular Pharmacology.

[182]  C. Fowler,et al.  Inhibitors of fatty acid amide hydrolase reduce carrageenan‐induced hind paw inflammation in pentobarbital‐treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors , 2005, British journal of pharmacology.

[183]  D. Paré,et al.  Prefrontal Control of the Amygdala , 2005, The Journal of Neuroscience.

[184]  J. Holden,et al.  The endogenous opioid system and clinical pain management. , 2005, AACN clinical issues.

[185]  J. Crystal,et al.  An endocannabinoid mechanism for stress-induced analgesia , 2005, Nature.

[186]  Emeran A. Mayer,et al.  Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis , 2005, Pain.

[187]  N. Carruthers,et al.  Identification and biological evaluation of 4-(3-trifluoromethylpyridin-2-yl)piperazine-1-carboxylic acid (5-trifluoromethylpyridin-2-yl)amide, a high affinity TRPV1 (VR1) vanilloid receptor antagonist. , 2005, Journal of medicinal chemistry.

[188]  N. Carruthers,et al.  Selective Blockade of the Capsaicin Receptor TRPV1 Attenuates Bone Cancer Pain , 2005, The Journal of Neuroscience.

[189]  B. Gorzalka,et al.  Downregulation of Endocannabinoid Signaling in the Hippocampus Following Chronic Unpredictable Stress , 2005, Neuropsychopharmacology.

[190]  B. Cravatt,et al.  Synergistic Interactions between Cannabinoids and Environmental Stress in the Activation of the Central Amygdala , 2005, Neuropsychopharmacology.

[191]  A. Apkarian,et al.  Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density , 2004, The Journal of Neuroscience.

[192]  D. Piomelli,et al.  RNA Interference Suggests a Primary Role for Monoacylglycerol Lipase in the Degradation of the Endocannabinoid 2-Arachidonoylglycerol , 2004, Molecular Pharmacology.

[193]  D. Finn,et al.  Evidence for differential modulation of conditioned aversion and fear‐conditioned analgesia by CB1 receptors , 2004, The European journal of neuroscience.

[194]  T. Freund,et al.  Segregation of two endocannabinoid‐hydrolyzing enzymes into pre‐ and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala , 2004, The European journal of neuroscience.

[195]  Dante R. Chialvo,et al.  Chronic pain patients are impaired on an emotional decision-making task , 2004, Pain.

[196]  Y. Smith,et al.  Distribution of mGluR1α and mGluR5 immunolabeling in primate prefrontal cortex , 2003 .

[197]  R. Ross Anandamide and vanilloid TRPV1 receptors , 2003, British journal of pharmacology.

[198]  J. Rhudy,et al.  Individual differences in the emotional reaction to shock determine whether hypoalgesia is observed. , 2003, Pain medicine.

[199]  M. Elphick,et al.  Comparative analysis of fatty acid amide hydrolase and cb1 cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling , 2003, Neuroscience.

[200]  H. Gühring,et al.  Flurbiprofen inhibits capsaicin induced calcitonin gene related peptide release from rat spinal cord via an endocannabinoid dependent mechanism , 2003, Neuroscience Letters.

[201]  A. Hohmann Spinal and peripheral mechanisms of cannabinoid antinociception: behavioral, neurophysiological and neuroanatomical perspectives. , 2002, Chemistry and physics of lipids.

[202]  W. Zieglgänsberger,et al.  The endogenous cannabinoid system controls extinction of aversive memories , 2002, Nature.

[203]  T. Freund,et al.  Brain monoglyceride lipase participating in endocannabinoid inactivation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[204]  David Robbe,et al.  Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[205]  C. Fowler,et al.  The palmitoylethanolamide family: a new class of anti-inflammatory agents? , 2002, Current medicinal chemistry.

[206]  B. Cravatt,et al.  Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[207]  M. Verbaten,et al.  Affective pictures processing, attention, and pain tolerance , 2001, Pain.

[208]  J. Rhudy,et al.  Noise stress and human pain thresholds: divergent effects in men and women. , 2001, The journal of pain : official journal of the American Pain Society.

[209]  Stephen P. Hunt,et al.  The molecular dynamics of pain control , 2001, Nature Reviews Neuroscience.

[210]  Randolph C. Arnau,et al.  Pain and Emotion: Effects of Affective Picture Modulation , 2001, Psychosomatic medicine.

[211]  M. Elphick,et al.  Localisation of cannabinoid receptors in the rat brain using antibodies to the intracellular C‐terminal tail of CB1 , 2000, The Journal of comparative neurology.

[212]  S. Narula,et al.  Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. , 2000, Molecular pharmacology.

[213]  M. Parmentier,et al.  Reduction of stress‐induced analgesia but not of exogenous opioid effects in mice lacking CB1 receptors , 2000, The European journal of neuroscience.

[214]  J. Rhudy,et al.  Fear and anxiety: divergent effects on human pain thresholds , 2000, Pain.

[215]  G. Marsicano,et al.  Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain , 1999, The European journal of neuroscience.

[216]  J. Walker,et al.  Pain modulation by release of the endogenous cannabinoid anandamide. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[217]  A. Ameri The effects of cannabinoids on the brain , 1999, Progress in Neurobiology.

[218]  P. Coffin,et al.  Anatomical basis for cannabinoid-induced antinociception as revealed by intracerebral microinjections , 1999, Brain Research.

[219]  R. Johnson,et al.  Inhibition of anandamide hydrolysis by the enantiomers of ibuprofen, ketorolac, and flurbiprofen. , 1999, Archives of biochemistry and biophysics.

[220]  M. Millan,et al.  The induction of pain: an integrative review , 1999, Progress in Neurobiology.

[221]  K. Mackie,et al.  Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system , 1998, Neuroscience.

[222]  Wayne Hall,et al.  Adverse effects of cannabis , 1998, The Lancet.

[223]  D. Piomelli,et al.  Control of pain initiation by endogenous cannabinoids , 1998, Nature.

[224]  A. McDonald Cortical pathways to the mammalian amygdala , 1998, Progress in Neurobiology.

[225]  J. D. Richardson,et al.  Antihyperalgesic effects of spinal cannabinoids. , 1998, European journal of pharmacology.

[226]  D. Piomelli,et al.  A second endogenous cannabinoid that modulates long-term potentiation , 1997, Nature.

[227]  Stephen P. Mayfield,et al.  Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides , 1996, Nature.

[228]  J. Schwartz,et al.  Formation and inactivation of endogenous cannabinoid anandamide in central neurons , 1994, Nature.

[229]  S. Munro,et al.  Molecular characterization of a peripheral receptor for cannabinoids , 1993, Nature.

[230]  D. Gibson,et al.  Isolation and structure of a brain constituent that binds to the cannabinoid receptor. , 1992, Science.

[231]  M. Herkenham,et al.  Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[232]  M. Herkenham,et al.  Cannabinoid receptor localization in brain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[233]  A. Howlett,et al.  Determination and characterization of a cannabinoid receptor in rat brain. , 1988, Molecular pharmacology.

[234]  Z. Amit,et al.  Stress-induced analgesia: adaptive pain suppression. , 1986, Physiological reviews.

[235]  M. Dougher Sensory decision theory analysis of the effects of anxiety and experimental instructions on pain. , 1979, Journal of abnormal psychology.

[236]  J. Bains,et al.  Neurobiological Interactions Between Stress and the Endocannabinoid System , 2016, Neuropsychopharmacology.

[237]  C. Woolf,et al.  Towards a mechanism-based approach to pain diagnosis , 2016 .

[238]  T. Rubino,et al.  Endocannabinoids and Mental Disorders. , 2015, Handbook of experimental pharmacology.

[239]  J. Burston,et al.  The role of the endocannabinoid system in pain. , 2015, Handbook of experimental pharmacology.

[240]  V. Neugebauer,et al.  Amygdala pain mechanisms. , 2015, Handbook of experimental pharmacology.

[241]  D. Finn,et al.  Neuroinflammatory Mechanisms Linking Pain and Depression. , 2015, Modern trends in pharmacopsychiatry.

[242]  B. Lutz,et al.  Therapeutic Potential of Inhibitors of Endocannabinoid Degradation for the Treatment of Stress-Related Hyperalgesia in an Animal Model of Chronic Pain , 2015, Neuropsychopharmacology.

[243]  D. Finn,et al.  Neurobiology of stress-induced hyperalgesia. , 2014, Current topics in behavioral neurosciences.

[244]  H. Bradshaw,et al.  Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment. , 2013, Pharmacological research.

[245]  P. Beaulieu,et al.  Recent Advances in the Pharmacological Management of Pain , 2012, Drugs.

[246]  Masahiko Watanabe,et al.  Behavioral / Systems / Cognitive Activation of Type 5 Metabotropic Glutamate Receptors and Diacylglycerol Lipase-Initiates 2-Arachidonoylglycerol Formation and Endocannabinoid-Mediated Analgesia , 2012 .

[247]  G. Quirk,et al.  Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear , 2011, Neuropsychopharmacology.

[248]  C. Krull Sonic Hedgehog gets another role , 2010, Nature Neuroscience.

[249]  V. Marzo Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight , 2010, Nature Neuroscience.

[250]  Masahiko Watanabe,et al.  Endocannabinoid-mediated control of synaptic transmission. , 2009, Physiological reviews.

[251]  P. Gean,et al.  The role of prefrontal cortex CB1 receptors in the modulation of fear memory. , 2009, Cerebral cortex.

[252]  P. Beaulieu,et al.  The Role of the Endogenous Cannabinoid System in Peripheral Analgesia , 2009 .

[253]  D. Lovinger Presynaptic modulation by endocannabinoids. , 2008, Handbook of experimental pharmacology.

[254]  A. Lichtman,et al.  Cannabinoid tolerance and dependence. , 2005, Handbook of experimental pharmacology.

[255]  A. Hohmann,et al.  Cannabinoid mechanisms of pain suppression. , 2005, Handbook of experimental pharmacology.

[256]  Tadashi. Sasaki,et al.  Stereochemistry of the π-route to 2,4-disubstituted adamantanes , 1971 .

[257]  R. Mechoulam,et al.  The absolute configuration of δ1-tetrahydrocannabinol, the major active constituent of hashish. , 1967 .