A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes

This paper presents a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche's method which was initially designed for Dirichlet's condition. A main interesting characteristic is that this approximation produces well-posed space semi-discretizations contrary to standard finite element discretizations. This paper is then mainly devoted to present an analysis of the semi-discrete problem in terms of consistency, well-posedness and energy conservation, and also to study the well-posedness of some time-marching schemes (theta-scheme, Newmark and a new hybrid scheme). The stability properties of the schemes and the corresponding numerical experiments can be found in a second paper.

[1]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[2]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[3]  Carlo D'Angelo,et al.  Numerical approximation with Nitsche's coupling of transient Stokes'/Darcy's flow problems applied to hemodynamics , 2012 .

[4]  B. Heinrich NITSCHE MORTARING FOR PARABOLIC INITIAL-BOUNDARY VALUE PROBLEMS , 2022 .

[5]  Michelle Schatzman,et al.  A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .

[6]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[7]  G. Burton Sobolev Spaces , 2013 .

[8]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[9]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[10]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[11]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[12]  Christof Eck,et al.  Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .

[13]  Yves Renard,et al.  The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..

[14]  L. Ridgway Scott Handbook of Numerical Analysis, Volume II. Finite Element Methods (Part I) (P. G. Ciarlet and J. L. Lions, eds.) , 1994, SIAM Rev..

[15]  Philippe G. Ciarlet,et al.  Handbook of Numerical Analysis , 1976 .

[16]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[17]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[18]  P. Tallec,et al.  Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .

[19]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[20]  P. Hansbo,et al.  Nitsche's method combined with space–time finite elements for ALE fluid–structure interaction problems☆ , 2004 .

[21]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[22]  J. U. Kim,et al.  A boundary thin obstacle problem for a wave equation , 1989 .

[23]  Peter Hansbo,et al.  Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .

[24]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[25]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[26]  Michel Salaün,et al.  Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations , 2013 .

[27]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[28]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .

[29]  W. Han,et al.  Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .

[30]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[31]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[32]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[33]  Matteo Astorino,et al.  An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .

[34]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[35]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[36]  Franz Chouly,et al.  A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .

[37]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[38]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[39]  Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data , 1991 .

[40]  Houari Boumediène Khenous Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .

[41]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[42]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[43]  J. Lions,et al.  Évolution : semi-groupe, variationnel , 1988 .

[44]  David E. Stewart,et al.  Existence of Solutions for a Class of Impact Problems Without Viscosity , 2006, SIAM J. Math. Anal..

[45]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[46]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[47]  Jérôme Pousin,et al.  Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary , 2014 .

[48]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[49]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[50]  K. Deimling Multivalued Differential Equations , 1992 .

[51]  P. Wriggers Computational contact mechanics , 2012 .