A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes
暂无分享,去创建一个
Franz Chouly | Patrick Hild | Yves Renard | P. Hild | Y. Renard | F. Chouly
[1] F. Armero,et al. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .
[2] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[3] Carlo D'Angelo,et al. Numerical approximation with Nitsche's coupling of transient Stokes'/Darcy's flow problems applied to hemodynamics , 2012 .
[4] B. Heinrich. NITSCHE MORTARING FOR PARABOLIC INITIAL-BOUNDARY VALUE PROBLEMS , 2022 .
[5] Michelle Schatzman,et al. A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .
[6] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[7] G. Burton. Sobolev Spaces , 2013 .
[8] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[9] P. Alart,et al. A generalized Newton method for contact problems with friction , 1988 .
[10] Yves Renard,et al. Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .
[11] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[12] Christof Eck,et al. Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .
[13] Yves Renard,et al. The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..
[14] L. Ridgway Scott. Handbook of Numerical Analysis, Volume II. Finite Element Methods (Part I) (P. G. Ciarlet and J. L. Lions, eds.) , 1994, SIAM Rev..
[15] Philippe G. Ciarlet,et al. Handbook of Numerical Analysis , 1976 .
[16] Franz Chouly,et al. A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..
[17] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[18] P. Tallec,et al. Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .
[19] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[20] P. Hansbo,et al. Nitsche's method combined with space–time finite elements for ALE fluid–structure interaction problems☆ , 2004 .
[21] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[22] J. U. Kim,et al. A boundary thin obstacle problem for a wave equation , 1989 .
[23] Peter Hansbo,et al. Stabilized Lagrange multiplier methods for bilateral elastic contact with friction , 2006 .
[24] P. Hansbo,et al. A finite element method for domain decomposition with non-matching grids , 2003 .
[25] Oscar Gonzalez,et al. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .
[26] Michel Salaün,et al. Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations , 2013 .
[27] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[28] Franz Chouly,et al. An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .
[29] W. Han,et al. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .
[30] Haim Brezis,et al. Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .
[31] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[32] Patrick Laborde,et al. Mass redistribution method for finite element contact problems in elastodynamics , 2008 .
[33] Matteo Astorino,et al. An added-mass free semi-implicit coupling scheme for fluid–structure interaction , 2009 .
[34] Franz Chouly,et al. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..
[35] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[36] Franz Chouly,et al. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .
[37] Erik Burman,et al. Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .
[38] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[39] Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data , 1991 .
[40] Houari Boumediène Khenous. Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .
[41] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[42] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[43] J. Lions,et al. Évolution : semi-groupe, variationnel , 1988 .
[44] David E. Stewart,et al. Existence of Solutions for a Class of Impact Problems Without Viscosity , 2006, SIAM J. Math. Anal..
[45] Alexandre Ern,et al. Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..
[46] P. Hansbo,et al. A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .
[47] Jérôme Pousin,et al. Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary , 2014 .
[48] Peter Hansbo,et al. Nitsche's method for interface problems in computa‐tional mechanics , 2005 .
[49] P. Wriggers,et al. A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .
[50] K. Deimling. Multivalued Differential Equations , 1992 .
[51] P. Wriggers. Computational contact mechanics , 2012 .