Spatial distribution of neurons innervated by chandelier cells

[1]  S. Anderson,et al.  The chandelier cell, form and function , 2014, Current Opinion in Neurobiology.

[2]  Yilin Tai,et al.  Regulation of chandelier cell cartridge and bouton development via DOCK7-mediated ErbB4 activation. , 2014, Cell reports.

[3]  G. Fishell,et al.  Interneuron cell types are fit to function , 2014, Nature.

[4]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[5]  N. Dehorter,et al.  Erbb4 Deletion from Fast-Spiking Interneurons Causes Schizophrenia-like Phenotypes , 2013, Neuron.

[6]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[7]  K. Fish,et al.  Parvalbumin-Containing Chandelier and Basket Cell Boutons Have Distinctive Modes of Maturation in Monkey Prefrontal Cortex , 2013, The Journal of Neuroscience.

[8]  R. Yuste,et al.  Dense and Overlapping Innervation of Pyramidal Neurons by Chandelier Cells , 2013, The Journal of Neuroscience.

[9]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[10]  S. Anderson,et al.  Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. , 2012, Cerebral cortex.

[11]  Rafael Yuste,et al.  State-Dependent Function of Neocortical Chandelier Cells , 2011, The Journal of Neuroscience.

[12]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[13]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[14]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[15]  Carlo Gaetan,et al.  Spatial Statistics and Modeling , 2009 .

[16]  R. Yuste,et al.  Depolarizing effect of neocortical chandelier neurons , 2022 .

[17]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[18]  A. Zaitsev,et al.  Interneuron diversity in layers 2-3 of monkey prefrontal cortex. , 2009, Cerebral cortex.

[19]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.

[20]  J. DeFelipe,et al.  Morphology and distribution of chandelier cell axon terminals in the mouse cerebral cortex and claustroamygdaloid complex. , 2009, Cerebral cortex.

[21]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[22]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[23]  Stephen J Eglen,et al.  Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning , 2008, BMC Neuroscience.

[24]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[25]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[26]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[27]  J. DeFelipe,et al.  The distribution of chandelier cell axon terminals that express the GABA plasma membrane transporter GAT-1 in the human neocortex. , 2007, Cerebral cortex.

[28]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[29]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[30]  G. Tamás,et al.  Lighting the chandelier: new vistas for axo-axonic cells , 2005, Trends in Neurosciences.

[31]  J C Fiala,et al.  Reconstruct: a free editor for serial section microscopy , 2005, Journal of microscopy.

[32]  G. Tamás,et al.  Summation of unitary IPSPs elicited by identified axo-axonic interneurons. , 2004, Cerebral cortex.

[33]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[34]  P. Somogyi,et al.  Axonal and dendritic arborization of an intracellularly labeled chandelier cell in the CA1 region of rat hippocampus , 2004, Experimental Brain Research.

[35]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[36]  David O'Sullivan,et al.  Geographic Information Analysis , 2002 .

[37]  A. Burkhalter,et al.  Axo‐axonic synapses formed by somatostatin‐expressing GABAergic neurons in rat and monkey visual cortex , 2002, The Journal of comparative neurology.

[38]  P. Goldman-Rakic,et al.  Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons , 2001, The Journal of Neuroscience.

[39]  S. Anderson,et al.  Origin and Molecular Specification of Striatal Interneurons , 2000, The Journal of Neuroscience.

[40]  J. DeFelipe Chandelier cells and epilepsy. , 1999, Brain : a journal of neurology.

[41]  O. Marín,et al.  Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. , 1999, Development.

[42]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[43]  J. Lübke,et al.  Regional variability and postsynaptic targets of chandelier cells in the hippocampal formation of the rat , 1996, The Journal of comparative neurology.

[44]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[45]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[46]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[47]  Alan Boyde,et al.  Analysis of a three-dimensional point pattern with replication , 1993 .

[48]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. I. The cell body , 1991, The Journal of comparative neurology.

[49]  I Fariñas,et al.  Patterns of synaptic input on corticocortical and corticothalamic cells in the cat visual cortex. II. The axon initial segment , 1991, The Journal of comparative neurology.

[50]  J DeFelipe,et al.  Synaptic connections of an interneuron with axonal arcades in the cat visual cortex , 1988, Journal of neurocytology.

[51]  P. Somogyi,et al.  Evidence for interlaminar inhibitory circuits in the striate cortex of the cat , 1987, The Journal of comparative neurology.

[52]  D. Whitteridge,et al.  Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat , 1985, The Journal of comparative neurology.

[53]  P. Somogyi,et al.  Identified axo-axonic cells are immunoreactive for GABA in the hippocampus visual cortex of the cat , 1985, Brain Research.

[54]  D. Schmechel,et al.  Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory‐motor cortex , 1985, The Journal of comparative neurology.

[55]  P. Somogyi,et al.  Glutamate decarboxylase‐immunoreactive terminals of Golgi‐impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex , 1983, The Journal of comparative neurology.

[56]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[57]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[58]  A. Peters,et al.  Chandelier cells in rat visual cortex , 1982, The Journal of comparative neurology.

[59]  F. Valverde,et al.  A specialized type of neuron in the visual cortex of cat: A Golgi and electron microscope study of chandelier cells , 1980, The Journal of comparative neurology.

[60]  A. Peters,et al.  Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex. A combined Golgi-electron microscope study , 1980, Journal of neurocytology.

[61]  Alan Peters,et al.  Smooth and sparsely‐spined stellate cells in the visual cortex of the rat: A study using a combined golgi‐electron microscope technique , 1978, The Journal of comparative neurology.

[62]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.

[63]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[64]  M. Arbib,et al.  Conceptual models of neural organization. , 1974, Neurosciences Research Program bulletin.