Tiling the (Musical) Line with polynomials: some Theoretical and implementational Aspects
暂无分享,去创建一个
[1] H. E. Slaught. THE CARUS MATHEMATICAL MONOGRAPHS , 1923 .
[2] I. Laba. The spectral set conjecture and multiplicative properties of roots of polynomials , 2000, math/0010169.
[3] Aaron D. Meyerowitz,et al. Tiling the Integers with Translates of One Finite Set , 1998 .
[4] M. Andreatta. On group-theoretical methods applied to music : some compositional and implementational aspects , 2022 .
[5] E. Amiot. Rhythmic canons and Galois theory , 2005 .
[6] L. Rédei. Zwei Lückensätze Über Polynome in Endlichen Primkörpern mit Anwendung auf die Endlichen Abelschen Gruppen und die Gaussischen Summen , 1947 .
[7] Emmanuel Amiot,et al. Tiling problems in music composition: Theory and Implementation , 2002, ICMC.
[8] Moreno Andreatta. Méthodes algébriques dans la musique et la musicologie du XXème siècle : aspects théoriques, analytiques et compositionnels , 2003 .
[9] Georg Hajós,et al. Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter , 1942 .
[10] I. Łaba. The Spectral Set Conjecture and Multiplicative Properties of Roots of Polynomials , 2002 .
[11] Richard Cohn. Introduction to Neo-Riemannian Theory: A Survey and a Historical Perspective , 1998 .
[12] Bent Fuglede,et al. Commuting self-adjoint partial differential operators and a group theoretic problem , 1974 .
[13] E. Amiot. Why rhythmic canons are interesting , 2003 .
[14] H. Fripertinger. Tiling problems in music theory , 2003 .
[15] Camilo Rueda,et al. Computer-Assisted Composition at IRCAM: From PatchWork to OpenMusic , 1999, Computer Music Journal.
[16] Dan Tudor Vuza,et al. Supplementary Sets and Regular Complementary Unending Canons (Part Four) , 1992 .
[17] H. Minkowski,et al. Diophantische Approximationen : eine Einführung in die Zahlentheorie , 1907 .
[18] O. Keller,et al. Über die lückenlose Erfüllung des Raumes mit Würfeln. , 1930 .