OPTIMAL DESIGNS FOR A CLASS OF POLYNOMIALS OF ODD OR EVEN DEGREE

prior y = ('Y1, .. v,Y.)d where the numbers yj correspond to the models of degree 2j 1 (2j) for j = 1,... , r. For a special class of priors, optimal designs of a very simple structure are calculated generalizing the D1-optimal design for polynomial regression of degree 2r 1 (2r). The support of these designs splits up in three sets and the masses of the optimal design at the support points of every set are all equal. The results are derived in a general context using the theory of canonical moments and continued fractions. Some applications are given to the D-optimal design problem for polynomial regression with vanishing coefficients of odd (or even) powers.

[1]  Paul G. Hoel,et al.  Efficiency Problems in Polynomial Estimation , 1958 .

[2]  J. Kiefer,et al.  Optimum Designs in Regression Problems , 1959 .

[3]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  M. Skibinsky The range of the (n + 1)th moment for distributions on [0, 1] , 1967 .

[6]  Morris Skibinsky Extreme nth moments for distributions on [0, 1] and the inverse of a moment space map , 1968 .

[7]  Morris Skibinsky,et al.  Some Striking Properties of Binomial and Beta Moments , 1969 .

[8]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[9]  E. Läuter Experimental design in a class of models , 1974 .

[10]  W. J. Studden $D_s$-Optimal Designs for Polynomial Regression Using Continued Fractions , 1980 .

[11]  W. J. Studden,et al.  OPTIMAL DESIGNS FOR WEIGHTED POLYNOMIAL REGRESSION USING CANONICAL MOMENTS , 1982 .

[12]  Christopher J. Nachtsheim,et al.  Model Robust, Linear-Optimal Designs , 1982 .

[13]  W. J. Studden Some Robust-Type D-Optimal Designs in Polynomial Regression , 1982 .

[14]  W. J. Studden,et al.  Optimal Designs for Trigonometric and Polynomial Regression Using Canonical Moments , 1985 .

[15]  M. Skibinsky Principal representations and canonical moment sequences for distributions on an interval , 1986 .

[16]  W. J. Studden,et al.  Efficient $D_s$-Optimal Designs for Multivariate Polynomial Regression on the $q$-Cube , 1988 .

[17]  T. Lau D-optimal designs on the unit q-ball , 1988 .

[18]  W. J. Studden Note on some $\phi_p$-Optimal Designs for Polynomial Regression , 1989 .

[19]  H. Dette,et al.  A Generalization of $D$- and $D_1$-Optimal Designs in Polynomial Regression , 1990 .

[20]  Holger Dette,et al.  A note on robust designs for polynomial regression , 1991 .

[21]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .