A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials

A new critical plane-energy model is proposed in this paper for multiaxial fatigue life prediction of metals. A brief review of existing methods, especially on the critical plane-based and energy-based methods, is given first. Special focus is on the Liu–Mahadevan critical plane approach, which has been shown to work for both brittle and ductile metals. One potential drawback of the Liu–Mahadevan model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings because only the strain terms are used and the out-of-phase hardening cannot be explicitly considered. An energy-based model using the Liu–Mahadevan concept is proposed with the help of the Mroz–Garud plasticity model. Thus, the empirical calibration for non-proportional loading is not needed because the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature, and the proposed model is shown to work for both proportional and non-proportional multiaxial loadings without the empirical calibration.

[1]  D. McDowell,et al.  Microstructure-sensitive modeling of high cycle fatigue , 2010 .

[2]  Grzegorz Glinka,et al.  MEAN STRESS EFFECTS IN MULTIAXIAL FATIGUE , 2007 .

[3]  J. Chaboche,et al.  A fracture mechanics based fatigue-creep-environment crack growth model for high temperature , 1993 .

[4]  K. S. Kim,et al.  A fatigue life model for 5% chrome work roll steel under multiaxial loading , 2004 .

[5]  F. A. Conle,et al.  Multiaxial Stress-Strain Modeling and Fatigue Life Prediction of SAE Axle Shafts , 1993 .

[6]  M. V. Borodii,et al.  Analysis of the experimental data on a low cycle fatigue under nonproportional straining , 2000 .

[7]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[8]  Ali Fatemi,et al.  Multiaxial fatigue: An overview and some approximation models for life estimation , 2011 .

[9]  Allan F. Bower,et al.  Cyclic hardening properties of hard-drawn copper and rail steel , 1989 .

[10]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[11]  Y. Garud A New Approach to the Evaluation of Fatigue Under Multiaxial Loadings , 1981 .

[12]  Ys Garud,et al.  Prediction of Stress-Strain Response under General Multiaxial Loading , 1982 .

[13]  Brian N. Leis,et al.  An Energy-Based Fatigue and Creep-Fatigue Damage Parameter , 1977 .

[14]  Rl Meltzer,et al.  Multiaxial Fatigue: A Survey of the State of the Art , 1981 .

[15]  A. Karolczuk,et al.  A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials , 2005 .

[16]  D. McDowell,et al.  High cycle fatigue of a die cast AZ91E-T4 magnesium alloy , 2004 .

[17]  Huseyin Sehitoglu,et al.  Modeling of cyclic ratchetting plasticity, part i: Development of constitutive relations , 1996 .

[18]  Grzegorz Glinka,et al.  A MULTIAXIAL FATIGUE STRAIN ENERGY DENSITY PARAMETER RELATED TO THE CRITICAL FRACTURE PLANE , 1995 .

[19]  K. S. Kim,et al.  fatigue analysis under variable amplitude loading using an energy parameter , 2003 .

[20]  Andrea Carpinteri,et al.  An alternative definition of the shear stress amplitude based on the Maximum Rectangular Hull method and application to the C‐S (Carpinteri‐Spagnoli) criterion , 2014 .

[21]  Andrea Carpinteri,et al.  Lifetime estimation in the low/medium-cycle regime using the Carpinteri–Spagnoli multiaxial fatigue criterion , 2014 .

[22]  Andrea Carpinteri,et al.  Critical Plane Criterion for Fatigue Life Calculation: Time and Frequency Domain Formulations , 2015 .

[23]  P. N. Mathur,et al.  Energy Versus Stress Theories for Combined Stress—A Fatigue Experiment Using a Rotating Disk , 1961 .

[24]  Andrea Carpinteri,et al.  Multiaxial high-cycle fatigue criterion for hard metals , 2001 .

[25]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[26]  S. Mahadevan,et al.  Multiaxial high-cycle fatigue criterion and life prediction for metals , 2005 .

[27]  G. Libertiny,et al.  Short-life fatigue under combined stresses , 1967 .

[28]  Zenon Mróz,et al.  On the description of anisotropic workhardening , 1967 .

[29]  Kangmin Kim,et al.  Multiaxial Fatigue Under Variable Amplitude Loads , 1999 .

[30]  O. M. Sidebottom,et al.  Cyclic Plasticity for Nonproportional Paths: Part 1—Cyclic Hardening, Erasure of Memory, and Subsequent Strain Hardening Experiments , 1978 .

[31]  Xu Chen,et al.  A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading , 1999 .

[32]  M. Brown,et al.  CYCLIC DEFORMATION OF 1% Cr‐Mo‐V STEEL UNDER OUT‐OF‐PHASE LOADS , 1979 .

[33]  Yongming Liu,et al.  Strain-based multiaxial fatigue damage modelling , 2005 .

[34]  D. Nelson,et al.  Biaxial Fatigue of A533B Pressure Vessel Steel , 1997 .

[35]  H. Nayeb-Hashemi,et al.  A MULTIAXIAL FATIGUE DAMAGE MODEL FOR ORTHOTROPIC MATERIALS UNDER PROPORTIONAL LOADING , 1993 .